EI、Scopus 收录
中文核心期刊

面向分块增材制造的结构拓扑优化和悬垂面控制

Topology Optimization and Overhanging Surfaces Control for Multi-component Additive Manufacturing

  • 摘要: 结合拓扑优化和增材制造可实现复杂构件的一体化设计及加工,在高端装备的设计制造中具有巨大的应用前景。然而,受限于打印尺寸和加工速率,单设备增材制造已不能满足工业领域大型构件的加工需求。多设备协同增材制造为突破设备尺寸限制加工大型构件创造了可能性,并有助于提升打印速率。本文提出了一种面向分块增材制造的结构拓扑优化方法,基于参数化水平集描述结构分块,并结合密度梯度识别和控制结构分块的悬垂面。提出方法能够协同优化结构拓扑、分块和打印方向,实现优化结构多分块无内部辅助支撑增材制造。基于参数化水平集,结构分块能够以少量参数描述,并通过水平集函数的参数显式控制大小,有助于优化结构分块适应打印设备尺寸。通过数值算例说明了提出方法在面向分块增材制造的结构拓扑、分块、打印方向协同优化和分块悬垂面控制中的有效性。

     

    Abstract: Integrating topology optimization with additive manufacturing (AM) enables the generative design and fabrication of complex structures, offering great potential for high performance parts. However, the size and speed limitations of single-machine AM hinder its application in fabricating large-scale parts. Multi-machine collaborative additive manufacturing enables the fabrication of large-scale components beyond equipment size limits and enhances printing efficiency. This work proposes a topology optimization method for multi-component AM. In our work, the parametric level sets are utilized to describe structural components, and are combined with the density gradient to identify and control overhanging surfaces. The proposed method enables simultaneous optimization of structural layouts, components, and build directions, achieving support-free multi-component AM. Based on the parametric level sets, each component partition can be described using only a few parameters, and the component size can be explicitly controlled through the parameters of the level set function to fit the build size of manufacturing equipment. Numerical examples are presented to validate the effectiveness of the proposed method in simultaneous optimization of structural layouts, component partitions, and build directions for multi-component AM.

     

/

返回文章
返回