EI、Scopus 收录
中文核心期刊

不同概率分布随机参数结构复合随机振动响应的解析解

Analytical solution for double random vibration response of structure with random parameters of different probability distributions

  • 摘要: 结合随机摄动-伽辽金法和随机振动频域分析法,提出了一种求解平稳随机激励下不同概率分布随机参数结构复合随机振动响应解析解的新方法。假定结构刚度矩阵含有多个不同概率分布的随机量,基于高阶摄动和随机伽辽金投影,推导出含多个随机变量的频响函数矩阵的幂级数展开。依据结构响应和外部随机激励间的频域传递关系,得到关于随机变量的响应功率谱密度函数的解析表达式。算例结果表明,在对具有不同概率分布随机参数结构进行复合随机振动分析时,该方法能够高效准确地得到响应功率谱密度函数的统计值,且和广义正交多项式混沌展开法相比,在计算精度和效率上均有优势。

     

    Abstract: Combining the stochastic perturbation-Galerkin method with the frequency domain analysis method in stochastic vibration, a novel method is proposed to derive the analytical solution for double random vibration response of the structure with random parameters of different probability distributions under stationary random excitation. Assuming that the structural stiffness matrix contains multiple random variables with different probability distributions, the power series expansion of the frequency response function (FRF) matrix involving multiple random variables is derived based on the high-order perturbation and stochastic Galerkin projection. By using the frequency-domain transfer relationship between structural responses and external random excitations, the analytical expression of the response power spectral density (PSD) function with respect to the random variables is obtained. Numerical results demonstrate that this method outperforms the generalized polynomial chaos expansion method (GPC) in both the computational accuracy and efficiency for the double random vibration analysis of structures with multiple random variables of different probability distributions.

     

/

返回文章
返回