EI、Scopus 收录
中文核心期刊

单向碳纤维增强复合材料弯曲疲劳特性研究

INVESTIGATION OF THE FLEXURAL FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES

  • 摘要: 弯曲疲劳载荷是复合材料结构常见的载荷形式. 当前研究大多聚焦于正应力比弯曲疲劳, 负应力比弯曲疲劳载荷作用下的损伤演化机理尚不明确. 本研究对不同纤维取向角度的转向架用T700/7901复合材料的弯曲疲劳力学特性开展了系统的实验研究. 通过R = 0.1和R = −1两种应力比疲劳实验作用下的滞回环及耗散能密度机理分析, 并结合断口形貌分析, 定量给出了影响疲劳寿命的核心因素. 研究表明: 在同等载荷水平下, 负应力比会使得复合材料弯曲疲劳S-N曲线左移, 疲劳寿命降级1-2个数量级; 同时, 负应力比载荷会使复合材料上下表面同时出现大面积损伤, 从而显著改变滞回环形状并致使耗散能密度显著增加, 进而加速损伤演化. 分析耗散能密度与疲劳寿命之间的对应关系, 发现两者之间存在明确的线性映射关系. 同一应力比条件下, 0°纤维取向复合材料的疲劳寿命远高于其它取向材料的疲劳寿命, 45°纤维取向复合材料的疲劳寿命比30°和15°的寿命更高. 本研究成果表明在弯曲承载复合材料结构设计中需要重点关注负应力比弯曲载荷工况, 本文的研究为复合材料的抗弯疲劳设计提供了指导.

     

    Abstract: Bending fatigue is a common loading mode in composite structures. Existing research has primarily focused on bending fatigue under positive stress ratios, while the damage-evolution mechanisms under negative stress-ratio bending fatigue remain insufficiently clarified. This study presents a systematic experimental investigation into the bending fatigue mechanical behavior of bogie-grade T700/7901 composites with different fiber orientations. Under fatigue loading with stress ratios R = 0.1 and R = −1, hysteresis loops and dissipated energy density are analyzed to elucidate the governing mechanisms; together with fractographic observations, the primary determinants of fatigue life are quantitatively identified. The results demonstrate that, at a fixed load level, a negative stress ratio shifts the bending fatigue S–N curve of the composite to lower lives, reducing life by 1-2 orders of magnitude. Moreover, a negative stress ratio load promotes extensive damage on both the tensile and compressive surfaces of the laminate, markedly altering the hysteresis loop and increasing the dissipated energy density, thereby accelerating damage evolution. By analyzing the correspondence between dissipated energy density and fatigue life, a clear linear mapping relationship between the two is identified. Under the same stress ratio, the fatigue life of 0° fiber–oriented composites is substantially higher than that of other orientations; the 45° fiber–oriented composites exhibit longer fatigue life than the 30° and 15° orientations. These findings indicate that, in the design of composite structures subjected to bending, particular attention should be paid to bending load cases with negative stress ratios. The present study provides guidance for the bending fatigue design of fiber-reinforced composites.

     

/

返回文章
返回