仪器化球形压入识别金属材料弹塑性参数的分析方法
A METHOD FOR IDENTIFYING ELASTIC–PLASTIC PARAMETERS OF METALS VIA INSTRUMENTED SPHERICAL INDENTATION
-
摘要: 发展了一种新型仪器化球形压入识别金属材料弹塑性参数的分析方法. 首先, 基于有限元模拟仪器化球形压入响应仿真的数字试验, 确认金属材料压入参量中压痕半径、接触半径和几何半径的近似, 验证Meyer法则适用仪器化球形压入测试. 其次, 基于线弹-幂硬化本构关系的孔洞扩张模型, 解析推导和仿真校准Meyer法则中指数和系数与材料塑性参量之间的控制方程, 确定其适用的压深范围, 发展一种识别金属材料塑性参数的分析方法. 再次, 集成经典识别弹性模量的分析方法, 发展一体化识别材料弹塑性参数的分析方法. 最后, 采用压入仿真, 评定分析方法的准确性; 选用6种典型金属材料, 分别进行仪器化压入试验和单轴拉伸试验, 评定分析方法的可靠性. 所研究的分析方法力学机制清晰、实用性强、适用范围广, 所发展的研究路线构建基于仪器化球形压入识别材料参数的研究框架.Abstract: This paper develops a method for identifying the elastic–plastic parameters of metallic materials using a novel instrumented spherical indentation technique. First, based on digital experiments involving finite element simulations of instrumented spherical indentation responses, approximations for indentation-related parameters of metallic materials—namely, the indentation radius, contact radius, and geometric radius—are established. The applicability of Meyer’s law to instrumented spherical indentation testing is verified. Second, using the cavity expansion model based on a linear elastic–power law hardening constitutive relation, control equations relating the exponent and coefficient in Meyer’s law to the material’s plastic parameters are analytically derived and calibrated via simulation. The applicable indentation depth range is determined, leading to the development of an analytical method for identifying the plastic parameters of metallic materials. Furthermore, by integrating classical methods for determining the elastic modulus, a unified analytical approach for identifying both elastic and plastic parameters is established. Finally, the accuracy of the proposed analytical method is evaluated through indentation simulations. Six typical metallic materials are selected, and both instrumented indentation tests and uniaxial tensile tests are conducted to assess the reliability of the method. The proposed analytical approach is characterized by clear mechanical principles, strong practicality, and broad applicability. The research methodology developed herein establishes a framework for identifying material parameters based on instrumented spherical indentation.
下载: