EI、Scopus 收录
中文核心期刊

空泡诱导液滴界面不稳定性研究

INSTABILITY ANALYSIS OF DROPLET SURFACE INDUCED BY A CAVITATION BUBBLE

  • 摘要: 运动两相流体界面不稳定性问题是存在于极紫外光刻机核心部件内的一个关键力学问题, 直接影响液滴形态的稳定性和光刻精度. 针对液滴靶在空泡诱导下产生的复杂界面动态行为, 构建了内空泡振荡诱导液滴外界面运动模型, 系统探究其失稳机理与演化规律. 在表面张力和流体密度等物性参数的影响下, 液滴界面会发生瑞利-泰勒不稳定性, 导致液滴界面形态发生改变并呈现出不同的模数. 基于开源计算流体力学平台 OpenFOAM 中的 compressibleInterIsoFoam 求解器, 开展高精度的数值模拟, 对液滴界面的失稳机制和模数演化特征进行研究. 通过引入速度环量方程, 给出了斜压项、切向加速度和表面张力沿界面的分布情况, 从涡量生成角度定量分析了流体界面失稳机制, 论证了斜压项在界面运动过程中产生涡量是导致液滴界面失稳的主导因素. 进一步借助快速傅里叶变换, 在频域空间内分析了液滴界面收缩过程中不同时刻的主导模数, 讨论了液滴半径和气泡内压主导下的液滴半径和运动周期等运动参数对界面模数演化的影响. 数值结果表明, 在运动界面失稳过程中往往存在多个主导模态竞争的现象, 且液滴开始收缩时的主导模态在液滴界面收缩过程中会保持主导地位. 当界面运动能够给扰动提供充足的发展空间时, 液滴界面会产生新的主导模态, 不同模态之间的相互作用显著影响界面结构的最终形态, 该发现对理解多相流体系统界面演化机制具有重要价值.

     

    Abstract: The instability at the interface of a moving two-phase fluid represents a significant mechanical challenge within the core component of extreme ultraviolet lithography systems, directly affecting droplet morphological stability and lithographic precision. To investigate the complex interfacial dynamics of droplet induced by cavitation, a model of droplet external surface motion driven by internal cavitation oscillations is developed. This model systematically explores the instability mechanisms and evolution patterns of such phenomena. Under the influence of physical parameters such as surface tension and fluid density, Rayleigh-Taylor instability occurs at the droplet surface, resulting in morphological changes that exhibit distinct mode characteristics. High-precision numerical simulations are conducted using the compressibleInterIsoFoam solver within the open-source platform OpenFOAM to investigate the instability mechanisms and morphological evolution of droplet surface. By introducing the vorticity circulation equation, the distributions of the baroclinic term, tangential acceleration, and surface tension along the droplet surface are presented. From the perspective of vortex generation, the mechanism of droplet surface instability is quantitatively analyzed, demonstrating that the baroclinic term is the dominant factor causing droplet surface instability. Further employing the fast Fourier transform, the dominant modes at different time during droplet surface contraction were analyzed in the frequency domain. The influence of motion parameters, such as droplet radius and oscillation period governed by droplet radius and bubble internal pressure, on the evolution of interface modes are discussed. Numerical results indicate that multiple competing dominant modes frequently exist during moving droplet surface, and the dominant mode presents when droplet contraction begins maintains its leading role throughout the interface contraction process. When droplet surface motion provides sufficient space for perturbation development, new dominant modes emerge at the droplet surface. The interaction between different modes significantly influences the final morphology of the droplet surface structure. This finding holds significant value for understanding the evolution mechanisms of surface in multiphase fluid systems.

     

/

返回文章
返回