变后缘柔性翼板梁耦合动力学建模 与气动弹性分析
PLATE-BEAM COUPLING DYNAMIC MODELING AND AEROELASTIC ANALYSIS OF MORPHING TRAILING EDGE FLEXIBLE WINGS
-
摘要: 柔性变后缘飞行器可以在各飞行任务阶段实现最佳性能, 因此成为航空航天领域的重要发展方向. 随着后缘结构柔性的增加, 变后缘柔性翼更容易发生结构响应, 从而导致气动弹性失稳. 具有截面非均匀刚度特性的变后缘柔性翼不再满足梁的刚性截面假设, 使得大展弦比机翼采用的传统梁模型在此类问题不再适用. 本文采用瑞丽-里茨假设形态法将变后缘柔性翼的刚度较大的前缘段和刚度较小的柔性后缘段分别等效为为欧拉梁模型和基尔霍夫板模型. 通过考虑刚性前缘的弯曲、扭转和柔性后缘的面外运动, 建立变后缘柔性翼板梁耦合动力学方程, 对静态力学性能和振动特性进行了分析. 通过与实验和有限元模型进行对比验证, 发现本文建立的结构解析模型在预测刚性前缘和柔性后缘的结构响应具有较高精度. 此外, 基于二维刚柔耦合柔性翼的非定常空气动力学理论和片条理论, 结合所提出的结构模型, 建立了模态空间表述下的变后缘柔性翼的高精度低阶气动弹性模型. 通过与悬臂板颤振实验结果和Nastran有限元软件建立的气动弹性数值模型进行对比, 验证了所提出的低维高精度动力学模型在计算颤振速度和颤振频率的准确性. 最后, 研究了变后缘柔性翼关键结构参数对颤振特性的影响, 发现柔性占比越大, 颤振速度越小. 在柔性占比较小时, 变后缘柔性翼相较于等截面悬臂机翼具有更高的颤振速度.Abstract: Under aerodynamic loading, morphing wings designed with compliant and lightweight principles are susceptible to structural responses that may lead to aeroelastic instability. The morphing trailing edge wing with chordwise non-uniform stiffness characteristic no longer satisfies the rigid section assumption of beam theory, making traditional beam models unsuitable, particularly for high aspect ratio wings. In this study, the Rayleigh-Ritz method is used to model the rigid front and flexible trailing sections of the morphing trailing edge wing as Euler beams and Kirchhoff plates, respectively. By considering the bending and twisting of the rigid front edge and the out-of-plane motion of the flexible trailing edge, a coupled plate-beam coupling dynamic equation is derived. Comparison with experimental results and finite element models shows that the analytical model accurately predicts the structural responses, including bending, twisting, and out-of-plane motion. Using unsteady aerodynamic theory for two-dimensional rigid-flexible coupled wings and strip theory, a high-accuracy low-order aeroelastic model is developed in modal space. Comparisons with cantilever plate flutter test results and Nastran aeroelastic numerical models confirm the model's accuracy in predicting flutter speed and frequency. Further analysis of key structural parameters reveals that as the flexibility ratio increases, the flutter speed decreases. When the flexibility ratio is small, the morphing trailing-edge wing exhibits a higher flutter speed compared to a constant cross-section cantilever wing.