EI、Scopus 收录
中文核心期刊

致密油多孔介质CO2混相与非混相驱替的改进格子Boltzmann模拟

IMPROVED LATTICE BOLTZMANN SIMULATION OF CO2 MISCIBLE AND IMMISCIBLE DISPLACEMENT IN TIGHT OIL POROUS MEDIA

  • 摘要: 致密油藏作为非常规油气资源的重要组成部分, 其高效开发对保障能源安全意义重大. 然而, 受低孔隙度、低渗透率以及强非均质性等储层特征制约, 传统开发方式在致密油藏中的应用效果较差. 目前CO2因其独特的物理化学性质, 作为关键注入介质, 被广泛应用于致密油藏开发, 并且CO2驱替技术正逐步成为突破非常规油气资源采收率瓶颈的核心手段之一. 本文基于多相多组分多松弛时间的格子玻尔兹曼方法, 耦合Shan-Chen伪势多相流模型与驱替边界条件, 提出一种改进的多相流驱替格子玻尔兹曼方法. 基于此方法对界面张力、接触角以及CO2在油相中的扩散过程进行了对比验证, 并引入佩克莱数, 分别建立了扩散系数、佩克莱数与CO2-油相互作用参数之间的定量表征关系. 进一步对CO2驱替过程中的部分关键参数进行了模拟分析, 并定量评价了不同关键参数影响下的驱替效果. 结果表明: 对于CO2非混相驱替, 毛管数与粘度比的联合作用对CO2突破后的驱替效率影响显著, 不同的润湿性会影响非混相驱替效果以及剩余油的分布形态. 对于CO2混相驱替, 低佩克莱数对应的驱替效率与采收率最低, 高佩克莱数会增强驱替不稳定性, 导致驱替效率逐步减小. 当佩克莱数在1附近, 会将分子扩散与粘性流动的协同耦合作用发挥到最佳, 驱替效率始终保持在较高水平. 并且佩克莱数的影响机制具有一定的粘度依赖性, 对于不同粘度比, 低佩克莱数都能有效遏制其所产生的粘性指进效应. 相较于CO2非混相驱替方式, 混相驱替由于较低的界面张力与原油粘度, 在致密油藏的实际开发过程中能够有效提高原油采收率.

     

    Abstract: Tight oil reservoirs, as an important part of unconventional oil and gas resources, their efficient development is of great significance for ensuring energy security. However, constrained by reservoir characteristics such as low porosity, low permeability, and strong heterogeneity, the application effect of traditional development methods in tight oil reservoirs is poor. At present, due to its unique physical and chemical properties, CO2, as a key injection medium, is widely used in the development of tight oil reservoirs, and CO2 displacement technology is gradually becoming one of the core means to break through the bottleneck of recovery efficiency of unconventional oil and gas resources. Based on the multiphase, multicomponent, and multiple-relaxation-time lattice Boltzmann method (LBM), this work couples the Shan-Chen pseudopotential multiphase flow model with displacement boundary conditions to propose an improved multiphase flow displacement LBM. Using this method, comparative validations are conducted for interfacial tension, contact angle, and the diffusion process of CO2 in the oil phase. The Péclet number is introduced to establish quantitative characterization relationships among the diffusion coefficient, Péclet number, and CO2-oil interaction parameters. Furthermore, numerical simulations analyze key parameters in the CO2 displacement process and quantitatively evaluate the displacement efficiency under the influence of different key parameters. The results show that for CO2 immiscible displacement, the combined effect of capillary number and viscosity ratio significantly influences the displacement efficiency after CO2 breakthrough, and different wettabilities affect the immiscible displacement effect and the distribution pattern of remaining oil. For CO2 miscible displacement, the displacement efficiency and oil recovery rate are the lowest at a low Péclet number; a high Péclet number enhances displacement instability, leading to a gradual decrease in displacement efficiency. When the Péclet number is around the unity, the synergistic coupling effect of molecular diffusion and viscous flow is maximized, maintaining a high displacement efficiency. The influence mechanism of the Péclet number has certain viscosity dependency: for different viscosity ratios, a lower Péclet number can effectively suppress the viscous fingering caused by them. Compared with CO2 immiscible displacement, miscible displacement can effectively enhance oil recovery in the actual development of tight oil reservoirs due to lower interfacial tension and oil viscosity.

     

/

返回文章
返回