EI、Scopus 收录
中文核心期刊

一维饱和土固结问题合理边界条件的研究

STUDY ON REASONABLE BOUNDARY CONDITIONS FOR ONE-DIMENSIONAL SATURATED SOIL CONSOLIDATION PROBLEM

  • 摘要: 基于太沙基一维固结理论和部分排水边界设置的问题, 目前部分排水边界条件采用E指数衰减函数作为边界孔隙水压力表示式, 尽管其满足了太沙基边界条件和初始条件, 但带来初始空隙水压变化率不为零的矛盾. 本文从物理意义出发, 推导了满足边界条和初始条件的空隙水压新的衰减函数, 建立了更为合理的一维饱和土固结问题的数学模型. 用傅里叶积分变换法和拉氏积分变换给出解析解. 通过引入的参数变化, 可以合理地表示排水能力的变化, 当无量纲参数取接近500时, 排水面孔隙水压几乎降为0, 可退化为太沙基的边界条件, 解也退化为太沙基解. 当无量纲参数取接近0.01时, 排水面孔隙水压几乎不变, 退化为不排水边界条件. 通过取相同参数情况下, 相同时刻, 本文所得到的孔隙水压力, 处处都大于E指数衰减函数的边界条件所对应的孔隙水压力. 就固结时间而言, 本文得到的固结时间最长, 太沙基解得到的固结时间最短, E指数衰减函数的边界条件得到的固结时间处于二者之间. 本文所得到的结果表明边界条件的合理性对于固结机理的呈现具有明显的影响, 同时也为合理地建立一维固结模型提供进一步的参考依据. 本文仅限于对边界条件的研究, 关于太沙基理论其他假设的缺陷如忽略土体松弛特性和蠕变特性未作讨论.

     

    Abstract: Based on Terzaghi’s one-dimensional consolidation theory applied to partially drained boundaries, conventional models often prescribe an exponential decay function (E-function) to represent boundary pore-water pressure. While this approach effectively reconciles Terzaghi’s boundary and initial conditions, it generates a physical paradox: at t = 0, the drainage boundary exhibits a nonzero rate of change of pore-water pressure, implying an instantaneous drainage velocity that contradicts the assumed initial undrained state. In this work, we revisit the physical basis of boundary conditions and derive a novel decay function for boundary pore-water pressure that simultaneously satisfies the initial condition of zero drainage velocity and the prescribed boundary constraint. This new formulation yields a mathematically consistent one-dimensional consolidation model for saturated soils with a partially permeable drainage boundary.Analytical solutions are obtained by applying Fourier integral transforms in the spatial coordinate and Laplace transforms in time. A key feature of the model is the introduction of a dimensionless parameter, α, which continuously controls drainage capacity. When α is set near 500, the boundary pore-water pressure decays almost instantaneously to zero, recovering the classical fully drained condition and Terzaghi’s original solution. Conversely, as α approaches 0.01, the boundary behaves as undrained, with pore-water pressure remaining effectively constant over time. Under identical α values and at any given dimensionless time, the pore-water pressures predicted by our model exceed those computed with the conventional E-function boundary condition. Correspondingly, the predicted consolidation time is longest for our solution, intermediate for the E-function condition, and shortest for Terzaghi’s fully drained case. Parametric studies further illustrate the sensitivity of consolidation rates to α and provide practical guidance for selecting boundary functions in geotechnical design.Results demonstrate that physically grounded boundary conditions are critical for accurately capturing consolidation mechanisms and timing. This work thus offers a robust reference for developing and calibrating one-dimensional consolidation models. Future research may extend the analysis to include soil relaxation and creep effects, which remain outside the scope of Terzaghi’s original theory.

     

/

返回文章
返回