EI、Scopus 收录
中文核心期刊

砂岩不同含水特性对超低摩擦效应影响试验研究

李利萍, 余泓浩, 李秋雨, 潘一山

李利萍, 余泓浩, 李秋雨, 潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报, 2025, 57(3): 687-700. DOI: 10.6052/0459-1879-24-480
引用本文: 李利萍, 余泓浩, 李秋雨, 潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报, 2025, 57(3): 687-700. DOI: 10.6052/0459-1879-24-480
Li Liping, Yu Honghao, Li Qiuyu, Pan Yishan. Experimental study on the influence of different water content characteristics of sandstone on ultra-low friction effect. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 687-700. DOI: 10.6052/0459-1879-24-480
Citation: Li Liping, Yu Honghao, Li Qiuyu, Pan Yishan. Experimental study on the influence of different water content characteristics of sandstone on ultra-low friction effect. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 687-700. DOI: 10.6052/0459-1879-24-480
李利萍, 余泓浩, 李秋雨, 潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报, 2025, 57(3): 687-700. CSTR: 32045.14.0459-1879-24-480
引用本文: 李利萍, 余泓浩, 李秋雨, 潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报, 2025, 57(3): 687-700. CSTR: 32045.14.0459-1879-24-480
Li Liping, Yu Honghao, Li Qiuyu, Pan Yishan. Experimental study on the influence of different water content characteristics of sandstone on ultra-low friction effect. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 687-700. CSTR: 32045.14.0459-1879-24-480
Citation: Li Liping, Yu Honghao, Li Qiuyu, Pan Yishan. Experimental study on the influence of different water content characteristics of sandstone on ultra-low friction effect. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 687-700. CSTR: 32045.14.0459-1879-24-480

砂岩不同含水特性对超低摩擦效应影响试验研究

基金项目: 国家自然科学基金(51974148)和辽宁省“兴辽英才计划”(XLYC1807130)资助项目
详细信息
    作者简介:

    李利萍, 教授, 主要研究方向为深部岩体力学特性. E-mail: liliping@lntu.edu.cn

  • 中图分类号: TD324, TU45

EXPERIMENTAL STUDY ON THE INFLUENCE OF DIFFERENT WATER CONTENT CHARACTERISTICS OF SANDSTONE ON ULTRA-LOW FRICTION EFFECT

Funds: Supported by the National Natural Science Foundation of China(Grant No. 51974148) and Liaoning Xingliao Talent Program(Grant No. XLYC1807130)
  • 摘要: 为揭示应力扰动下巷道砂岩含水特性对超低摩擦型冲击地压影响机制, 利用自制超低摩擦试验装置, 以沈阳某矿砂岩为研究对象, 通过改变砂岩块体含水率和浸水高度分别模拟深部岩体整体和分层含水特性, 以中间砂岩为工作块体, 利用其峰值水平位移和岩岩界面合摩擦力分别表征超低摩擦效应强度和阻力, 开展砂岩不同含水特性对超低摩擦效应影响试验研究. 研究结果表明: (1) 不同含水率和浸水高度工作块体位移时程曲线, 均有准备、冲击和振荡3个阶段性特征, 同时其峰值水平位移随垂直扰动频率增加均具有明显分区特性, 超低摩擦效应强影响区和弱影响区分界处峰值水平位移均值分别为0.232和0.368 mm; (2) 工作块体干燥、饱和含水率下超低摩擦效应平均强度分别比自然含水率状态下高165%和89.7%, 含水率增加后摩擦力平均最大降幅为16.6%, 表明砂岩含水率由自然状态下继续增加易发生超低摩擦效应但强度减弱; (3) 工作块体浸水高度75 mm时超低摩擦效应强度平均增幅146%, 摩擦力最大降幅为12.1%, 表明此时易发生超低摩擦效应且强度较高; (4) 砂岩块体含水率1.05 %和浸水高度75 mm时, 超低摩擦效应强度最高, 实际工况中需合理控制岩体含水率和浸水高度, 防止超低摩擦型冲击地压灾害发生.
    Abstract: To reveal the influence mechanism of water-bearing characteristics of tunnel sandstone on ultra-low friction type impact ground pressure under stress disturbance, a self-made ultra-low friction test device was used. Taking the sandstone in Shenyang as the research object, The whole and layered water-bearing characteristics of deep rock mass are simulated by changing the water content and immersion height of sandstone block. Taking the intermediate sandstone as the working block, the peak horizontal displacement and the friction force of rock-rock interface were used to characterize the strength and resistance of ultra-low friction effect respectively, and experimental study on the influence of different water content characteristics of sandstone on ultra-low friction effect was carried out. The results show that: (1) The displacement time history curves of working blocks with different water content and immersion height have three stages of preparation, impact and oscillation. At the same time, the peak horizontal displacement has obvious zoning characteristics with the increase of vertical disturbance frequency. The average value of peak horizontal displacement at the boundary of strong influence zone and weak influence zone of ultra-low friction effect is 0.232 and 0.368 mm respectively. (2) The average strength of ultra-low friction effect under dry and saturated water content of working block is 165% and 89.7% higher than that under natural water content, respectively. The average maximum reduction in friction due to increased moisture content is 16.6%, indicating that the water content of rock mass continues to increase from natural state, which is prone to ultra-low friction effect but the strength is weakened. (3) The average increase in the strength of the ultra-low friction effect of the working block immersion height of 75 mm is 146%, and the maximum decrease in friction is 12.1%, indicating that the ultra-low friction effect is prone to occur currently and the strength is high. (4) When the water content of sandstone block is 1.05% and the immersion height is 75 mm, the strength of ultra-low friction effect is the highest. In the actual working conditions, the water content and immersion height of rock mass should be reasonably controlled to prevent the occurrence of ultra-low friction rock burst disaster.
  • 水易诱发工程地质灾害, 地下岩体在水环境中受物理、化学作用影响, 岩石在不同水条件下力学行为具有显著差异[1-2]. 在地下水浸泡作用下, 巷道砂岩含水率和浸水高度改变, 巷道砂岩产生不同程度劣化, 物理力学性能降低, 此时在应力扰动下使块系岩体滑移失稳, 发生超低摩擦型冲击地压[3], 严重危害生命财产安全, 如图1所示. 辽宁沈阳某矿由于底板长时间浸水润滑, 在冲击地压现场发现巨量煤岩体向巷道整体滑移达数米, 采用超低摩擦效应理论可合理解释这一异常现象[4]. 地下水改变砂岩物理力学性质从而影响层间摩擦力, 因此考虑含水砂岩超低摩擦效应具有重要意义.

    图  1  巷道围岩滑移失稳破坏示意图
    Figure  1.  Slip instability failure of roadway surrounding rock

    超低摩擦效应是指在动载扰动作用下, 当冲击能量达到一定程度时, 在相互作用块体间产生摩擦“消失”的效应. 岩体超低摩擦效应概念于1995年首次提出. Kurlenya等[5-6]发现岩体间摩擦阻力逐渐降低, 甚至出现摩擦“消失”现象. Rutter等[7]发现岩体界面软弱夹层对超低摩擦滑动起重要作用. Tarasov等[8]在地下深部矿山地震和岩石断裂中均发现了超低摩擦效应. 钱七虎[9]提出岩体块系结构中存在超低摩擦效应. 潘一山等[10]发现岩块间软弱介质处于最大拉伸状态时, 在侧向扰动作用下岩体极易发生超低摩擦滑动. 何满潮等[11]通过2D-DIC法监测超低摩擦效应模拟试验, 验证了超低摩擦效应的存在. 王明洋等[12-13]采用块系岩体动力模型, 从理论上对超低摩擦现象给出了解释. 李利萍等[14-17]首次提出超低摩擦型冲击地压概念, 从界面粗糙度、软弱夹层和冲击倾向性等角度探究其与超低摩擦效应关系.

    水是影响岩石力学性质的重要因素[18-20]. Tang等[21-22]对不同含水率的砂岩试样进行了三点弯曲测试, 明确了含水率对砂岩断裂韧度的影响规律. Chen等[23]研究了软岩在不同低频扰动和含水率条件下的破坏模式演化规律, 结果表明: 随初始扰动的增加, 干燥软岩的破坏模式由“剪切-拉张-剪切”过渡, 而含水软岩主要表现为张拉破坏. Lyu等[24]对取自深埋隧道不同饱水时间的花岗岩试样进行单轴压缩试验和声发射监测, 研究结果揭示了地下水对花岗岩力学特性、微破裂行为及破坏模式的影响规律. 金解放等[25-26]对不同含水率红砂岩进行不同冲击速度的冲击试验, 分析冲击速度和含水率对红砂岩能量耗散特性的影响. 王宇等[27]开展不同含水率泥岩的加轴压卸围压蠕变试验, 建立了含水泥岩细观结构模型. 郝瑞卿等[28]对干燥和饱水状态下含不同尖端相交裂隙夹角的砂岩试样进行了单轴压缩试验, 结果表明尖端相交裂隙的夹角和饱水状态对砂岩力学性质及破坏模式均有较大影响.

    虽然众多学者从块系结构等方面对岩体超低摩擦效应进行了大量研究, 但未考虑地下水环境影响, 对含水岩体超低摩擦效应鲜有研究. 水岩相互作用将改变岩石物理力学性质, 更易诱发超低摩擦型冲击地压[29-31]. 本研究通过工作块体含水率和浸水高度描述深部地层砂岩在不同水环境中赋存状态的特性, 探究砂岩含水特性、垂直扰动振幅和频率三者间关系, 以工作块体峰值水平位移和岩岩界面合摩擦力分别表征超低摩擦效应强度和阻力, 以期为冲击地压监测和预警提供参考.

    砂岩试件均采自沈阳某矿, 其物理力学参数如表1所示, 试件埋深800 m. 将试件制成Ф50 mm × 100 mm圆柱体用于不同含水率砂岩抗压强度试验和100 mm × 100 mm × 100 mm立方体用于超低摩擦试验, 如图2所示. 完成初步加工后, 对试件进行筛选工作, 剔除明显应力缺陷砂岩试件, 用余下合格的试件完成单轴压缩试验以及超低摩擦试验. 考虑到试件在试验过程中可能受到水分蒸发等因素的影响, 将试件用保鲜膜进行严密包裹, 有效隔绝外部环境因素, 最大限度地减少非测试因素对试验结果产生的干扰, 确保试验数据的可靠性和有效性.

    表  1  砂岩物理力学参数
    Table  1.  Physical and mechanical parameters of sandstone
    Specimen Water
    content/%
    Density/
    (g·cm−3)
    Compressive
    strength/MPa
    Elastic
    modulus/GPa
    Poisson
    ratio
    sandstone 0.89 2.65 22.94 27.82 0.26
    下载: 导出CSV 
    | 显示表格
    图  2  部分试验试件
    Figure  2.  Part of the test specimens

    图3为自制岩岩界面超低摩擦效应试验装置. 该设备集成了静载加载模块、动载加载单元和冲击加载部分, 能够模拟模型系统在组合载荷下的力学行为. 数据采集系统由Panasonic激光传感器采集, 确保了高精度试验数据的获取. 液压控制系统方面, 包括静载液压缸、垂直扰动液压缸和水平冲击液压缸, 分别负责施加轴压、垂直方向的扰动载荷以及水平方向的冲击载荷. 通过调控液压系统, 能够模拟多种复杂的应力环境情况. 该装置可实现水平冲击力在0 ~ 30 MPa范围内变化, 轴向扰动振幅可在0 ~ 3 MPa区间内调节, 扰动频率可调范围为0 ~ 30 Hz.

    图  3  深部岩体超低摩擦试验装置
    Figure  3.  Ultra-low friction test device for deep rock

    不同含水率和浸水高度超低摩擦试验步骤如下.

    (1) 含水率处理: 首先通过浸水实验, 获取了砂岩含水率随时间演变的规律, 如图4所示. 然后制备0%(干燥状态), 0.89%(自然含水率), 1.21%, 1.33%以及1.36%(饱和含水率)不同含水率的试件. 用保鲜膜包裹并利用密封袋进行密封, 以确保试件在试验前保持恒定的含水率.

    图  4  砂岩含水率和抗压强度随浸水时间变化规律
    Figure  4.  The variation law of water content and compressive strength of sandstone with soaking time

    (2) 浸水高度处理: 设置0, 25, 50, 75和100 mm 5组浸水高度. 浸水高度为0 mm的试件, 无需进行泡水处理; 将其余浸水高度试件放入容器中, 通过精确调整注水高度改变试件浸水高度. 在浸水过程中, 每隔2 h取出试件, 用湿布轻轻擦去试件表面的水分, 然后对其进行精确称重. 这个过程一直持续到试样的质量变化小于0.02 g时, 认为浸水高度试件制备完成. 最后用保鲜膜包裹并利用密封袋密封, 确保试件在试验前保持恒定的状态.

    (3) 安放块体: 将块体按图5所示组合堆叠, 工作块体为中间砂岩.

    图  5  块体组合示意图
    Figure  5.  Schematic diagram of block combination

    (4) 开始试验: 轴压值设定为岩体在地下垂直方向受到应力的1/4, 轴压为5 MPa[32], 根据相似模拟理论施加围压2 MPa[33], 施加垂直扰动${P_v}(t) = {P_v}\sin ({\omega _v}t)$, $ {\omega _v} = 2\text{π} {f_v} $, $ {f_v} $为垂直扰动频率, Hz. 最后施加水平冲击应力1 MPa.

    (5) 重复上述试验步骤, 垂直扰动振幅分别为1, 2和3 MPa, 垂直扰动频率分别为0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5和4.0 Hz.

    (6) 试验结束, 整理数据.

    具体超低摩擦试验方案如表2所示. 块体组合模型是研究深部开采试验的重要力学模型[34-35]. 块体组合试验模型的可靠性在文献[36]中已得到验证.

    表  2  砂岩不同含水特性超低摩擦试验方案
    Table  2.  Ultra-low friction test scheme of sandstone with different water content characteristics
    Test number Water
    content/%
    Immersion
    height/mm
    Axial stress/
    MPa
    Confining
    pressure/MPa
    Horizontal
    impact stress/MPa
    Vertical disturbance
    amplitude/
    MPa
    frequency/Hz
    group A A1 0 5 2 1 1, 2, 3 0.5, 1.0, 1.5, 2.0,
    2.5, 3.0, 3.5, 4.0
    A2 0.89
    A3 1.21
    A4 1.33
    A5 1.36
    group B B1 0 5 2 1 1, 2, 3 0.5, 1.0, 1.5, 2.0,
    2.5, 3.0, 3.5, 4.0
    B2 25
    B3 50
    B4 75
    B5 100
    下载: 导出CSV 
    | 显示表格

    深部岩体应力环境错综复杂, 冲击地压对地下工程的威胁不可忽视, 砂岩的力学性质为冲击地压影响因素之一, 而水作为岩石的固有成分, 含水率的变化对岩石力学特性有直接影响. 为模拟深部开采过程中不同强度扰动, 试验垂直扰动振幅为1, 2, 3 MPa 3种工况, 扰动频率为0.5 ~ 4 Hz 8种工况, 模拟开采中顶板断裂等导致的外部干扰. 以工作块体峰值水平位移和界面合摩擦力分别表征超低摩擦效应强度和阻力, 通过对试验数据进行分析, 得到工作块体含水率和工作块体浸水高度对岩岩组合超低摩擦效应的影响规律.

    通过改变浸泡时间来改变工作块体含水率, 分析工作块体含水率对岩岩组合超低摩擦效应影响. 制备5组不同含水率的砂岩工作块体, 含水率分别为0%, 0.89%(自然含水率), 1.21%, 1.33%和1.36%(饱和含水率). 考虑到应力波扰动与冲击地压等工程现象之间存在着紧密的关联, 国内外专家学者普遍采用应力波扰动作为一种有效的模拟手段, 以模拟机械振动、顶板破裂和高强度开采等矿山开采活动导致的扰动效应. 试验过程中, 使用位移传感器记录不同工况下工作块体的位移变化, 绘制出位移时程曲线, 以垂直扰动振幅2 MPa为例, 如图6所示.

    图  6  垂直扰动振幅为2 MPa时不同含水率砂岩位移-时间曲线
    Figure  6.  Time-displacement curves of sandstone with different water content when the amplitude is 2 MPa

    结果表明: 不同含水率工作块体的位移时程曲线, 均有3个明显的阶段性特征: 初期平衡的准备阶段、水平位移急增的冲击阶段和平衡收敛的振荡阶段.

    工作块体最初仅受到垂直扰动作用, 处于相对稳定的平衡状态, 水平冲击后, 工作块体出现位移突增现象, 摩擦力开始占据主导地位, 进入振荡收敛阶段, 工作块体逐渐减慢直至停止. 观察结果与文献[37]中的相关论述吻合, 该文献指出失稳过程可分为平静期、加速期和稳定期3个阶段, 其中平静期内应变能蓄积但试件位移不显著, 加速期为过渡环节且最易于产生明显位移, 进一步证实了试验结果的可靠性和科学性.

    图7为不同垂直扰动振幅下峰值水平位移随频率变化曲线. 不同垂直扰动振幅时, 不同含水率下工作块体峰值水平位移具有明显的分区特性. 因此, 取相同垂直扰动振幅下峰值水平位移平均值作为分区分界线, 峰值水平位移高于平均值为超低摩擦强响应区(以下均为强响应区), 低于平均值为超低摩擦弱响应区(以下均为弱响应区).

    图  7  不同垂直扰动振幅下峰值水平位移-频率曲线
    Figure  7.  Peak horizontal displacement-frequency curves under different vertical disturbance amplitudes

    垂直扰动振幅1, 2和3 MPa下峰值水平位移均值分别为0.231, 0.219和0.247 mm. 垂直扰动1, 2和3 MPa时, 工作块体含水率为0.89%和1.21%峰值水平位移均处于弱响应区. 工作块体含水率为0, 1.05%和1.36%大部分峰值水平位移均处于强响应区, 其中扰动振幅1 MPa时, 工作块体含水率为1.05%有1个点处于弱响应区; 扰动振幅2 MPa时, 工作块体含水率为1.36%有4个点处于弱响应区; 扰动振幅3 MPa时, 工作块体含水率为0和1.36%分别有4个和1个点处于弱响应区.

    试验结果表明: 垂直扰动频率对工作块体含水率为0.89%和1.21%超低摩擦效应强度影响较弱, 而对工作块体含水率为0和1.36%超低摩擦效应强度影响较强. 垂直扰动振幅增加, 超低摩擦效应将增强.

    图8为不同垂直扰动振幅下峰值水平位移随工作块体含水率变化曲线. 不同垂直扰动振幅下, 峰值水平位移随工作块体含水率增加具有相同变化规律, 均存在两个降低和增加阶段, 整体呈“W”型. 工作块体峰值水平位移对含水率变化具有较强敏感度, 峰值水平位移响应呈波动剧烈的特征, 表明在垂直扰动作用下随着工作块体含水率逼近1.36%, 岩岩组合的稳定性大幅下降, 导致工作块体峰值水平位移出现较大起伏.

    图  8  不同垂直扰动振幅下峰值水平位移-含水率曲线
    Figure  8.  Peak horizontal displacement-water content curve under different vertical disturbance amplitude

    垂直扰动振幅1和2 MPa时, 工作块体含水率为1.05%有最大峰值位移分别为0.465和0.460 mm, 垂直扰动振幅3 MPa时, 工作块体含水率为1.36%时峰值水平位移有最大值为0.456 mm. 垂直扰动振幅1, 2和3 MPa下, 干燥和饱和含水率超低摩擦效应平均强度分别比自然含水率高192%和171%、133%和88%、70%和111%, 表明垂直扰动振幅增加将改变超低摩擦效应强度差距.

    试验结果表明: 超低摩擦效应强度受工作块体含水率影响显著, 工作块体峰值水平位移随含水率增加呈“W”变化规律, 垂直扰动振幅增加将缩小不同含水率的工作块体间超低摩擦效应强度.

    图9为不同垂直扰动振幅下工作块体上下界面合摩擦力(以下简称摩擦力)随垂直扰动频率变化规律. 垂直扰动振幅1 MPa时, 垂直扰动频率3.0 Hz时摩擦力有最大值为10.1 kN, 垂直扰动频率2.5 Hz时有最小值为8.61 kN, 摩擦力最大降幅为6.39%, 摩擦力随频率增加可分为3个阶段: 降低阶段(0.5 ~ 2.5 Hz)、增加阶段(2.5 ~ 3.0 Hz)和平缓阶段(3.0 ~ 4.0 Hz). 垂直扰动振幅2 MPa时, 垂直扰动频率3.0 Hz时摩擦力有最大值为7.55 kN, 垂直扰动频率2.5 Hz时有最小值为5.71 kN, 摩擦力最大降幅为8.73%, 摩擦力随频率增加可分为4个阶段: 平缓阶段(0.5 ~ 2.0 Hz)、降低阶段(2.0 ~ 2.5 Hz)、增加阶段(2.5 ~ 3.0 Hz)和平缓阶段(3.0 ~ 4.0 Hz). 垂直扰动振幅3 MPa时, 垂直扰动频率0.5 Hz时摩擦力有最大值为7.12 kN, 垂直扰动频率2.0 Hz时有最小值为5.52 kN, 摩擦力最大降幅为12.7%, 摩擦力随频率增加可分为两个阶段: 降低阶段(0.5 ~ 2.0 Hz)和增加阶段(2.0 ~ 4.0 Hz).

    图  9  不同垂直扰动振幅下摩擦力-频率曲线
    Figure  9.  Friction-frequency curves under different vertical disturbance amplitudes

    垂直扰动频率对工作块体摩擦力影响显著, 摩擦力均在2.0 ~ 2.5 Hz时有最小值. 超低摩擦阻力在垂直扰动作用下发生改变, 垂直扰动频率较小时, 应力波由顶板向底板传播, 工作块体在顶、底板共同作用下岩-岩界面间正压力减小, 使摩擦力减小. 当垂直扰动频率超过2.5 Hz后, 扰动频率过高, 应力波对工作块体上下界面产生不同程度损伤, 界面摩擦系数增加, 使工作块体发生超低摩擦效应阻力增加, 更难发生超低摩擦效应, 表现为摩擦力增加.

    试验结果表明: 垂直扰动频率2.0 ~ 2.5 Hz时超低摩擦效应阻力降低显著. 垂直扰动振幅3 MPa时, 垂直扰动频率2.0 Hz时, 超低摩擦效应阻力最小, 摩擦力最大降幅为12.7%.

    图10为不同垂直扰动振幅作用下工作块体摩擦力与含水率的关系曲线. 不同垂直扰动振幅下摩擦力随含水率增加均可分为两个阶段: 增加阶段(0 ~ 0.89%)和降低阶段(0.89% ~ 1.36%). 当工作块体含水率由0增加至0.89%时, 摩擦力增加, 表明此阶段含水率增加对摩擦力具有一定影响, 工作块体含水率的增加小于质量增加对摩擦力的影响, 因此在发生超低摩擦效应时阻力增加. 当工作块体含水率由0.89%增加至1.36%时, 摩擦力降低, 表明摩擦力对含水率变化极为敏感. 工作块体含水率增加, 界面被水分润湿甚至局部软化, 摩擦力大幅下降, 使工作块体稳定性降低.

    图  10  不同垂直扰动振幅下摩擦力-含水率曲线
    Figure  10.  Friction-water content curves under different vertical disturbance amplitudes

    试验结果表明: 垂直扰动振幅1, 2和3 MPa时, 摩擦力最大降幅分别为13%, 19.5%和17.2%; 平均降幅分别为12.3%, 17%和14.3%. 表明工作块体含水率由自然状态下继续增加将降低超低摩擦效应发生的阻力, 更易发生超低摩擦效应.

    地下矿区存在大量且水文地质条件各异采空区, 由于水源补给和排泄状况不同, 采空区积水量不同. 针对不同浸水高度砂岩块体对岩岩组合超低摩擦效应影响分析, 得到工作块体浸水高度对超低摩擦效应影响规律, 为现场岩体稳定性预测提供参考.

    通过改变浸泡时间来改变工作块体浸水高度, 分析工作块体浸水高度对岩岩组合超低摩擦效应影响. 制备5组不同浸水高度的砂岩工作块体, 浸水高度分别为0, 25, 50, 75和100 mm. 绘制出不同垂直扰动振幅下水平位移时程曲线, 以垂直扰动振幅2 MPa为例, 如图11所示.

    图  11  垂直扰动振幅为2 MPa时不同浸水高度砂岩位移时程曲线
    Figure  11.  Time history curves of sandstone displacement at different flooding heights with vertical disturbance amplitude of 2 MPa

    结果表明: 不同浸水高度工作块体的位移时程曲线, 同样具有3个明显的阶段性特征: 初期平衡的准备阶段、水平位移急增的冲击阶段和平衡收敛的振荡阶段. 准备阶段时, 工作块体受垂直扰动影响, 水平位移存在波动. 冲击阶段时, 垂直扰动和水平冲击共同作用产生超低摩擦效应, 水平位移急增达到峰值. 振荡阶段时, 水平冲击消失, 水平位移仅受垂直扰动影响, 小幅度降低并波动.

    图12为不同垂直扰动振幅下峰值水平位移随频率变化曲线. 垂直扰动振幅1 MPa时, 不同浸水高度工作块体峰值水平位移随频率增加变化较为一致, 在2.0 ~ 3.0 Hz时存在先增加后降低阶段. 不同垂直扰动振幅下峰值水平位移随频率增加存在集中区, 具有明显分区特征. 因此, 取相同垂直扰动振幅下峰值水平位移平均值作为分区分界线, 峰值水平位移高于平均值为强响应区, 低于平均值为弱响应区.

    图  12  不同垂直扰动振幅下峰值水平位移-频率曲线
    Figure  12.  Peak horizontal displacement-frequency curves under different vertical disturbance amplitudes

    垂直扰动振幅1, 2和3 MPa下峰值水平位移均值分别为0.346, 0.369和0.389 mm. 垂直扰动1, 2和3 MPa时, 工作块体浸水高度为75 mm峰值水平位移值均处于强响应区, 工作块体浸水高度0, 25, 50和100 mm大部分峰值水平位移值均处于弱响应区, 其中扰动振幅1 MPa时, 工作块体浸水高度0, 25, 50和100 mm分别有3, 1, 1和2个点处于强响应区; 扰动振幅2 MPa时, 工作块体浸水高度0, 25, 50和100 mm分别有0, 0, 4和1个点处于强响应区; 扰动振幅3 MPa时, 工作块体浸水高度0, 25, 50和100 mm分别有0, 1, 3和0个点处于弱响应区. 工作块体浸水高度50 mm峰值水平位移具有由弱响应区向强响应区增加趋势, 且峰值水平位移随垂直扰动振幅增加而增加, 表明垂直扰动振幅增加将增加超低摩擦效应强度.

    试验结果表明: 不同垂直扰动下工作块体浸水高度0, 25, 50和100 mm时超低摩擦效应强度较弱, 而工作块体浸水高度75 mm时超低摩擦效应强度较强. 垂直扰动振幅增加, 超低摩擦效应强度增加.

    图13为不同垂直扰动振幅下峰值水平位移随工作块体浸水高度变化曲线. 垂直扰动振幅1 MPa时, 工作块体峰值水平位移随浸水高度可分为3个阶段: 降低阶段(0 ~ 25 mm)、增加阶段(25 ~ 75 mm)和降低阶段(75 ~ 100 mm). 垂直扰动振幅2和3 MPa时, 工作块体峰值水平位移随浸水高度可分为两个阶段: 增加阶段(0 ~ 75 mm)和降低阶段(75 ~ 100 mm).

    图  13  不同垂直扰动振幅下峰值水平位移-浸水高度曲线
    Figure  13.  Peak horizontal displacement-soaking height curve under different vertical disturbance amplitude

    垂直扰动振幅1 MPa时, 工作块体浸水高度75 mm时有最大峰值水平位移为0.806 mm, 垂直扰动振幅2和3 MPa时, 工作块体浸水高度75 mm时峰值水平位移有最大值分别为1.09和1.10 mm. 垂直扰动振幅1, 2和3 MPa下, 浸水高度75 mm时超低摩擦效应平均强度分别增加150%, 134%和153%, 表明浸水高度75 mm时将大幅增加超低摩擦效应强度.

    浸水高度较低时, 由于水分对工作块体的影响相对较小, 峰值水平位移增加较为平缓. 当浸水高度达到阈值(75 mm)时, 工作块体的水平位移急剧增大, 具有最大峰值水平位移. 在特定浸水高度下, 由于工作块体质量增加的负面作用和水分润滑效果正面作用达到完美平衡, 将使峰值水平位移显著增加. 浸水高度超过75 mm后, 峰值水平位移呈降低趋势, 可能是因为过高的浸水高度虽能使水分继续渗透进入砂岩内部, 但砂岩的饱和度已接近极限, 此时水分的增加并不能进一步大幅改变块体间超低摩擦效应强度. 同时, 过度浸水可能导致块体体积膨胀阻碍超低摩擦效应发生, 因此工作块体峰值水平位移数值出现回落现象.

    试验结果表明: 超低摩擦效应强度受工作块体浸水高度影响显著, 工作块体峰值水平位移存在增加和降低两个阶段, 工作块体浸水高度75 mm具有最大峰值水平位移, 超低摩擦效应强度平均增幅146%.

    图14为不同垂直扰动振幅下工作块体摩擦力随垂直扰动频率变化规律. 垂直扰动振幅1 MPa时, 摩擦力随垂直扰动频率增加可分为4个阶段: 平缓阶段(0.5 ~ 2.0 Hz)、降低阶段(2.0 ~ 2.5 Hz)、增加阶段(2.5 ~ 3.0 Hz)和平缓阶段(3.0 ~ 4.0 Hz), 垂直扰动频率2.5 Hz时摩擦力有最小值. 垂直扰动振幅2 MPa时, 摩擦力随垂直扰动频率增加可分为两个阶段: 降低阶段(0.5 ~ 2.5 Hz)和增加阶段(2.5 ~ 4.0 Hz), 垂直扰动频率2.5 Hz时摩擦力有最小值. 垂直扰动振幅3 MPa时, 摩擦力随垂直扰动频率增加可分为3个阶段: 平缓阶段(0.5 ~ 2.0 Hz)、降低阶段(2.0 ~ 3.0 Hz)和增加阶段(3.0 ~ 4.0 Hz), 垂直扰动频率3.0 Hz时摩擦力有最小值.

    图  14  不同垂直扰动振幅下摩擦力-频率曲线
    Figure  14.  Friction-frequency curves under different vertical disturbance amplitudes

    垂直扰动频率对工作块体摩擦力影响显著, 摩擦力均在2.5 ~ 3.0 Hz时有最小值. 外界扰动频率会改变岩块间的最大拉伸值[10]. 超低摩擦阻力在垂直扰动作用下发生改变, 工作块体与相邻块体间存在着拉伸和挤压交替变化, 当达到拉伸最大值时, 工作块体上下界面间正压力减小, 使工作块体所受摩擦力减小, 出现最大的“剥离”状态, 此时在侧向力作用下工作块体容易发生超低摩擦效应. 垂直扰动振幅1, 2和3 MPa时, 摩擦力最大降幅分别为2.39%, 3.55%和12.1%, 表明垂直扰动振幅增加将增大摩擦力降幅.

    试验结果表明: 垂直扰动频率2.5 ~ 3.0 Hz时超低摩擦效应阻力降低显著. 垂直扰动振幅3 MPa时, 垂直扰动频率3.0 Hz时, 超低摩擦效应阻力最小, 摩擦力最大降幅为12.1%.

    图15为不同垂直扰动振幅作用下工作块体摩擦力与浸水高度的关系曲线. 垂直扰动振幅1和3 MPa时, 摩擦力随工作块体浸水高度增加可分为两个阶段: 降低阶段(0 ~ 75 mm)和增加阶段(75 ~ 100 mm). 垂直扰动振幅2 MPa时, 摩擦力随工作块体浸水高度增加而降低. 原因可能是当工作块体浸水高度增加, 工作块体各部分产生不同程度劣化, 工作块体产生分层异性, 此时受外部扰动, 更易使工作块体摩擦力大幅降低. 在垂直扰动过程中, 不同扰动频率使工作块体内部原有裂隙和孔隙扩展, 水分将产生润滑作用, 水分可对砂岩块体内裂隙的充填和润湿作用达到最大化, 从而显著降低了块体间的摩擦阻力, 使工作块体更易相对滑动, 从而诱发超低摩擦效应.

    图  15  不同垂直扰动振幅下摩擦力-浸水高度曲线
    Figure  15.  Friction-soaking height curves under different vertical disturbance amplitudes

    试验结果表明: 垂直扰动振幅1, 2和3 MPa时, 摩擦力最大降幅分别为9.13%, 13.3%和17.6%, 平均降幅分别为8.56%, 12.5%和15.8%. 工作块体浸水高度增加将降低超低摩擦效应发生阻力, 更易出现超低摩擦效应.

    地下深部岩体开采伴随应力扰动和地下水, 研究其对超低摩擦效应影响具有重要意义. 其中应力扰动使煤岩层法向应力的减小或切向应力的增加时, 将会引起煤岩层面的低摩擦滑动[38]. 而地下水对岩体影响机理更为复杂, 当砂岩中含水率增加时, 水分对岩岩界面颗粒与颗粒间、颗粒与接触面间的润滑和软化作用更加显著, 使摩擦力降低. 同时含水率越高, 颗粒相对破碎率越低, 导致咬合摩擦力降低[39]. 砂岩含水率由干燥向自然状体增加, 颗粒完全和局部破碎总数越多, 颗粒破碎和重新排列需要额外做功越多, 导致摩擦力小幅度增加[40]. 砂岩浸水高度增加, 此时上下岩岩界面具有相同含水率, 而材料的物理性质和不同粗糙度接触面凹槽表面几乎没有差异, 但砂岩各部分产生不同程度劣化, 砂岩产生分层异性, 此时受外部扰动应力分布差异较大, 结果使砂岩摩擦力大幅降低.

    结合本文研究内容对2017辽宁某矿事故原因进行分析, 事故现场工况如图16所示. 事故现场巨量煤岩体整体向巷道方向滑移[4]. 垂直应力扰动对砂岩层产生周期性拉伸、压缩作用, 水平冲击力对砂岩层产生推拉作用, 砂岩层长时间受采区积水浸水作用, 在垂直和水平方向反复强扰动下, 砂岩层间摩擦作用减弱甚至消失, 发生超低摩擦型冲击地压, 使岩体瞬间整体滑移.

    图  16  含水岩体超低摩擦型冲击地压
    Figure  16.  Ultra-low friction type impact ground pressure in water-bearing rock body

    本文采用自制深部岩体超低摩擦试验装置和监测系统, 通过改变工作块体含水率和浸水高度模拟深部砂岩不同水环境下地质特性, 进行不同垂直扰动振幅和垂直扰动频率下砂岩超低摩擦试验研究, 主要研究结论如下.

    (1) 不同含水率和浸水高度下工作块体峰值水平位移随垂直扰动频率增加具有明显的分区特性. 工作块体含水率为0, 1.05%和1.36%时浸水高度75 mm大部分峰值水平位移均处于强响应区, 表明具有较强超低摩擦效应强度.

    (2) 工作块体干燥和饱和含水率下超低摩擦效应平均强度分别比自然含水率状态下高165%和89.7%, 含水率增加摩擦力平均最大降幅为16.6%. 表明工作块体含水率由自然状态下继续增加更易发生超低摩擦效应.

    (3) 工作块体浸水高度75 mm超低摩擦效应强度平均增幅146%. 垂直扰动振幅3 MPa和频率3.0 Hz时, 摩擦力最大降幅为12.1%. 表明工作块体浸水高度增加将降低超低摩擦效应发生阻力, 更易发生超低摩擦效应.

  • 图  1   巷道围岩滑移失稳破坏示意图

    Figure  1.   Slip instability failure of roadway surrounding rock

    图  2   部分试验试件

    Figure  2.   Part of the test specimens

    图  3   深部岩体超低摩擦试验装置

    Figure  3.   Ultra-low friction test device for deep rock

    图  4   砂岩含水率和抗压强度随浸水时间变化规律

    Figure  4.   The variation law of water content and compressive strength of sandstone with soaking time

    图  5   块体组合示意图

    Figure  5.   Schematic diagram of block combination

    图  6   垂直扰动振幅为2 MPa时不同含水率砂岩位移-时间曲线

    Figure  6.   Time-displacement curves of sandstone with different water content when the amplitude is 2 MPa

    图  7   不同垂直扰动振幅下峰值水平位移-频率曲线

    Figure  7.   Peak horizontal displacement-frequency curves under different vertical disturbance amplitudes

    图  8   不同垂直扰动振幅下峰值水平位移-含水率曲线

    Figure  8.   Peak horizontal displacement-water content curve under different vertical disturbance amplitude

    图  9   不同垂直扰动振幅下摩擦力-频率曲线

    Figure  9.   Friction-frequency curves under different vertical disturbance amplitudes

    图  10   不同垂直扰动振幅下摩擦力-含水率曲线

    Figure  10.   Friction-water content curves under different vertical disturbance amplitudes

    图  11   垂直扰动振幅为2 MPa时不同浸水高度砂岩位移时程曲线

    Figure  11.   Time history curves of sandstone displacement at different flooding heights with vertical disturbance amplitude of 2 MPa

    图  12   不同垂直扰动振幅下峰值水平位移-频率曲线

    Figure  12.   Peak horizontal displacement-frequency curves under different vertical disturbance amplitudes

    图  13   不同垂直扰动振幅下峰值水平位移-浸水高度曲线

    Figure  13.   Peak horizontal displacement-soaking height curve under different vertical disturbance amplitude

    图  14   不同垂直扰动振幅下摩擦力-频率曲线

    Figure  14.   Friction-frequency curves under different vertical disturbance amplitudes

    图  15   不同垂直扰动振幅下摩擦力-浸水高度曲线

    Figure  15.   Friction-soaking height curves under different vertical disturbance amplitudes

    图  16   含水岩体超低摩擦型冲击地压

    Figure  16.   Ultra-low friction type impact ground pressure in water-bearing rock body

    表  1   砂岩物理力学参数

    Table  1   Physical and mechanical parameters of sandstone

    Specimen Water
    content/%
    Density/
    (g·cm−3)
    Compressive
    strength/MPa
    Elastic
    modulus/GPa
    Poisson
    ratio
    sandstone 0.89 2.65 22.94 27.82 0.26
    下载: 导出CSV

    表  2   砂岩不同含水特性超低摩擦试验方案

    Table  2   Ultra-low friction test scheme of sandstone with different water content characteristics

    Test number Water
    content/%
    Immersion
    height/mm
    Axial stress/
    MPa
    Confining
    pressure/MPa
    Horizontal
    impact stress/MPa
    Vertical disturbance
    amplitude/
    MPa
    frequency/Hz
    group A A1 0 5 2 1 1, 2, 3 0.5, 1.0, 1.5, 2.0,
    2.5, 3.0, 3.5, 4.0
    A2 0.89
    A3 1.21
    A4 1.33
    A5 1.36
    group B B1 0 5 2 1 1, 2, 3 0.5, 1.0, 1.5, 2.0,
    2.5, 3.0, 3.5, 4.0
    B2 25
    B3 50
    B4 75
    B5 100
    下载: 导出CSV
  • [1] 孙晓明, 姜铭, 王新波等. 万福煤矿不同含水率砂岩蠕变力学特性试验研究. 岩土力学, 2003, 44(3): 624-636 (Sun Xiaoming, Jiang Ming, Wang Xinbo, et al. Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine. Rock and Soil Mechanics, 2003, 44(3): 624-636 (in Chinese)

    Sun Xiaoming, Jiang Ming, Wang Xinbo, et al. Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine. Rock and Soil Mechanics, 2003, 44(3): 624-636 (in Chinese)

    [2]

    Zhu J, Deng J, Chen F, et al. Water-weakening effects on the strength of hard rocks at different loading rates: An experimental study. Rock Mechanics and Rock Engineering, 2021, 54(8): 4347-4353 doi: 10.1007/s00603-021-02482-3

    [3] 李利萍, 李卫军, 潘一山. 冲击扰动对超低摩擦型冲击地压影响分析. 岩石力学与工程学报, 2019, 38(1): 111-120 (Li Liping, Li Weijun, Pan Yishan. Influence of impact disturbance on anomalously low friction rock bursts. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 111-120 (in Chinese)

    Li Liping, Li Weijun, Pan Yishan. Influence of impact disturbance on anomalously low friction rock bursts. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 111-120 (in Chinese)

    [4] 李利萍, 潘一山. 深部煤岩超低摩擦效应能量特征试验研究. 煤炭学报, 2020, 45(S1): 202-210 (Li Liping, Pan Yishan. Experimental research on energy characteristics of anomalously low friction effect in deep coal and rock mass. Journal of China Coal Society, 2020, 45(S1): 202-210 (in Chinese)

    Li Liping, Pan Yishan. Experimental research on energy characteristics of anomalously low friction effect in deep coal and rock mass. Journal of China Coal Society, 2020, 45(S1): 202-210 (in Chinese)

    [5]

    Kurlenya MV, Oparin VN, Vostrikov VI. Effect of anomalously low friction in block media. Journal of Applied Mechanics and Technical Physics, 1999, 40(6): 1116-1120 doi: 10.1007/BF02469182

    [6]

    Kurlenya MV, Oparin VN, Vostrikov VI. Pendulum-type waves. Part II: Experimental methods and main results of physical modeling. Journal of Mining Science, 1996, 32(4): 245-273

    [7]

    Rutter EH, Hackston A, Yeatman EM, et al. Reduction of friction on geological faults by weak-phase smearing. Journal of Structural Geology, 2013, 51: 52-60 doi: 10.1016/j.jsg.2013.03.008

    [8]

    Tarasov BG, Randolph MF. Frictionless shear at great depth and other paradoxes of hard rocks. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 316-328 doi: 10.1016/j.ijrmms.2007.06.001

    [9] 钱七虎. 深部地下空间开发中的关键科学问题//钱七虎院士论文选集, 2007: 565-584 (Qian Qihu. Key scientific issues in deep underground space development//Selections from Academician Qian Qihu’s Theses, 2007: 565-584 (in Chinese)

    Qian Qihu. Key scientific issues in deep underground space development//Selections from Academician Qian Qihu’s Theses, 2007: 565-584 (in Chinese)

    [10] 潘一山, 王凯兴. 岩体间超低摩擦发生机理的摆型波理论. 地震地质, 2014, 36(3): 833-844 (Pan Yishan, Wang Kaixing. Pendulum-type waves theory on the mechanism of anomalously low friction between rock masses. Seismology and Geology, 2014, 36(3): 833-844 (in Chinese)

    Pan Yishan, Wang Kaixing. Pendulum-type waves theory on the mechanism of anomalously low friction between rock masses. Seismology and Geology, 2014, 36(3): 833-844 (in Chinese)

    [11] 何满潮, 王炀, 刘冬桥等. 基于二维数字图像相关技术的块系花岗岩超低摩擦效应实验研究. 煤炭学报, 2018, 43(10): 2732-2740 (He Manchao, Wang Yang, Liu Dongqiao, et al. Experimental study on ultra-ow friction effect of granite block based on two-dimensional digital image correlation technique. Journal of China Coal Society, 2018, 43(10): 2732-2740 (in Chinese)

    He Manchao, Wang Yang, Liu Dongqiao, et al. Experimental study on ultra-ow friction effect of granite block based on two-dimensional digital image correlation technique. Journal of China Coal Society, 2018, 43(10): 2732-2740 (in Chinese)

    [12] 王明洋, 周泽平, 钱七虎. 深部岩体的构造和变形与破坏问题. 岩石力学与工程学报, 2006, 25(3): 448-455 (Wang Mingyang, Zhou Zeping, Qian Qihu. Tectonic, deformation and failure problems of deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 448-455 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.002

    Wang Mingyang, Zhou Zeping, Qian Qihu. Tectonic, deformation and failure problems of deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 448-455 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.002

    [13] 王明洋, 戚承志, 钱七虎. 深部岩体块系介质变形与运动特性研究. 岩石力学与工程学报, 2005, 24(16): 2825-2830 (Wang Mingyang, Qi Chengzhi, Qian Qihu. Study on deformation and motion characteristics of blocks in deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2825-2830 (in Chinese)

    Wang Mingyang, Qi Chengzhi, Qian Qihu. Study on deformation and motion characteristics of blocks in deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2825-2830 (in Chinese)

    [14] 李利萍, 胡学锦, 潘一山等. 不同粗糙度煤岩界面超低摩擦效应与声发射特征试验研究. 力学学报, 2024, 56(4): 1047-1056 (Li Liping, Hu Xuejin, Pan Yishan, et al. Experimental study on ultra-low friction effect and acoustic emission characteristics of coal-rock interface with different roughness. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1047-1056 (in Chinese) doi: 10.6052/0459-1879-23-466

    Li Liping, Hu Xuejin, Pan Yishan, et al. Experimental study on ultra-low friction effect and acoustic emission characteristics of coal-rock interface with different roughness. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1047-1056 (in Chinese) doi: 10.6052/0459-1879-23-466

    [15] 李利萍, 余泓浩, 张海涛等. 含软弱夹层煤岩界面超低摩擦效应试验研究. 岩石力学与工程学报, 2023, 42(7): 1638-1649 (Li Liping, Yu Honghao, Zhang Haitao, et al. Experimental study on ultra-low friction effect at the interface of coal rock containing weak sandwich. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1638-1649 (in Chinese)

    Li Liping, Yu Honghao, Zhang Haitao, et al. Experimental study on ultra-low friction effect at the interface of coal rock containing weak sandwich. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1638-1649 (in Chinese)

    [16] 李利萍, 胡学锦, 潘一山等. 煤的冲击倾向性对深部煤岩界面超低摩擦效应影响研究. 岩土力学, 2024, 45(6): 1633-1642 (Li Liping, Hu Xuejin, Pan Yishan, et al. Study on the influence of bursting liability of coal on the ultra-low friction effect at deep coal-rock interface. Rock and Soil Mechanics, 2024, 45(6): 1633-1642 (in Chinese)

    Li Liping, Hu Xuejin, Pan Yishan, et al. Study on the influence of bursting liability of coal on the ultra-low friction effect at deep coal-rock interface. Rock and Soil Mechanics, 2024, 45(6): 1633-1642 (in Chinese)

    [17] 李利萍, 胡学锦, 潘一山等. 煤岩界面粗糙度对超低摩擦效应影响研究. 岩石力学与工程学报, 2024, 45(6): 1633-1642 (Li Liping, Hu Xuejin, Pan Yishan, et al. Study on the influence of bursting liability of coal on the ultra-low friction effect at deep coal-rock interface. Rock and Soil Mechanics, 2024, 45(6): 1633-1642 (in Chinese)

    Li Liping, Hu Xuejin, Pan Yishan, et al. Study on the influence of bursting liability of coal on the ultra-low friction effect at deep coal-rock interface. Rock and Soil Mechanics, 2024, 45(6): 1633-1642 (in Chinese)

    [18] 周辉, 宋明, 张传庆等. 三轴应力下水对泥质砂岩力学特性影响的试验研究. 岩土力学, 2022, 43(9): 2391-2398 (Zhou Hui, Song Ming, Zhang Chuanqing, et al. Experimental study on influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression. Rock and Soil Mechanics, 2022, 43(9): 2391-2398 (in Chinese)

    Zhou Hui, Song Ming, Zhang Chuanqing, et al. Experimental study on influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression. Rock and Soil Mechanics, 2022, 43(9): 2391-2398 (in Chinese)

    [19]

    Li D, Wang W. Quantitative analysis of the influence of saturation on rock strength reduction considering the distribution of water. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5(2): 197-207 doi: 10.1007/s40948-019-00106-3

    [20]

    Wong LNY, Maruvanchery V, Liu G. Water effects on rock strength and stiffness degradation. Acta Geotechnica, 2016, 11(4): 713-737 doi: 10.1007/s11440-015-0407-7

    [21]

    Tang SB. The effects of water on the strength of black sandstone in a brittle regime. Engineering Geology, 2018, 239: 167-178 doi: 10.1016/j.enggeo.2018.03.025

    [22]

    Yu C, Tang SB, Tang C, et al. The effect of water on the creep behavior of red sandstone. Engineering Geology, 2019, 253: 64-74

    [23]

    Chen L, Wang D, Jiang Y, et al. Study on the failure modes of water-bearing soft rock under different low-frequency disturbance. Engineering Failure Analysis, 2024, 164: 108683

    [24]

    Lyu X, Zhang R, Zhang A, et al. Influence of groundwater on micro-cracking behaviour and failure mechanism of deep hard rock. Measurement, 2024, 237: 115175

    [25] 金解放, 徐虹, 余雄等. 动荷载和含水率对红砂岩破坏及能耗特性的影响. 岩土力学, 2022, 43(12): 3231-3240 (Jin Jiefnag, Xu Hong, Yu Xiong, et al. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone. Rock and Soil Mechanics, 2022, 43(12): 3231-3240 (in Chinese)

    Jin Jiefnag, Xu Hong, Yu Xiong, et al. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone. Rock and Soil Mechanics, 2022, 43(12): 3231-3240 (in Chinese)

    [26] 金解放, 方立兴, 王宇等. 高水压高应力岩石动态响应特性试验研究. 岩石力学与工程学报, 2024, 43(1): 1-18 (Jin Jiefnag, Fang Lixing, Wang Yu, et al. Experimental study on dynamic response characteristics of rocks under high water pressure and high stress. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 1-18 (in Chinese)

    Jin Jiefnag, Fang Lixing, Wang Yu, et al. Experimental study on dynamic response characteristics of rocks under high water pressure and high stress. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 1-18 (in Chinese)

    [27] 王宇, 夏厚磊, 邓华锋等. 含水泥岩卸荷蠕变数值模拟及劣化机制研究. 岩石力学与工程学报, 2024, 43(7): 1621-1635 (Wang Yu, Xia Houlei, Deng Huafeng, et al. Numerical simulation of unloading creep and deterioration mechanism of water bearing mudstone. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1621-1635 (in Chinese)

    Wang Yu, Xia Houlei, Deng Huafeng, et al. Numerical simulation of unloading creep and deterioration mechanism of water bearing mudstone. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1621-1635 (in Chinese)

    [28] 郝瑞卿, 曹平, 王华等. 干燥与饱水状态下含尖端相交裂隙砂岩的力学特性及破裂演化规律试验研究. 岩石力学与工程学报, 2024, 43(7): 1696-1706 (Hao Ruiqing, Cao Ping, Wang Hua, et al. Mechanical properties and fracture behaviors of sandstone in dry and saturated states with tip intersecting cracks. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1696-1706 (in Chinese)

    Hao Ruiqing, Cao Ping, Wang Hua, et al. Mechanical properties and fracture behaviors of sandstone in dry and saturated states with tip intersecting cracks. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1696-1706 (in Chinese)

    [29] 宋常胜, 王文, 刘凯等. 真三轴动静组合加载饱水煤样能量耗散特征. 煤炭学报, 2022, 47(5): 2011-2026 (Song Changsheng, Wang Wen, Liu Kai. Energy dissipation characteristics of water saturated coal samples under true triaxial dynamic and static combined loading. Journal of China Coal Society, 2022, 47(5): 2011-2026 (in Chinese)

    Song Changsheng, Wang Wen, Liu Kai. Energy dissipation characteristics of water saturated coal samples under true triaxial dynamic and static combined loading. Journal of China Coal Society, 2022, 47(5): 2011-2026 (in Chinese)

    [30] 朱思雨, 丰成君, 谭成轩等. 雄安容城深热储层回灌注水诱发断层失稳危险性研究. 岩石力学与工程学报, 2022, 41(S1): 2735-2756 (Zhu Siyu, Feng Chengjun, Tan Chengxuan, et al. Fault slip potential induced by water injection in the Rongcheng deep-seated geothermal reservoir, Xiong'an New Area. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2735-2756 (in Chinese)

    Zhu Siyu, Feng Chengjun, Tan Chengxuan, et al. Fault slip potential induced by water injection in the Rongcheng deep-seated geothermal reservoir, Xiong'an New Area. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2735-2756 (in Chinese)

    [31] 窦林名, 周坤友, 曹安业等. 深部巨厚承压含水层采动疏水诱冲机理. 煤炭学报, 2024, 49(1): 351-366 (Dou Linming, Zhou Kunyou, Cao Anye. deep extra-thick aquifer Rock burst mechanism caused by the mining-induced drainage of confined water in. Journal of China Coal Society, 2024, 49(1): 351-366 (in Chinese)

    Dou Linming, Zhou Kunyou, Cao Anye. deep extra-thick aquifer Rock burst mechanism caused by the mining-induced drainage of confined water in. Journal of China Coal Society, 2024, 49(1): 351-366 (in Chinese)

    [32] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索. 岩石力学与工程学报, 2015, 34(11): 2161-2178 (Xie Heping, Gao Feng, Ju Yang. Resrarch and development of rock mechanics in deep ground engineering. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178 (in Chinese)

    Xie Heping, Gao Feng, Ju Yang. Resrarch and development of rock mechanics in deep ground engineering. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178 (in Chinese)

    [33] 李利萍, 潘一山, 鞠翔宇等. 平均应力对超低摩擦型冲击地压影响试验研究. 中国矿业大学学报, 2020, 49(1): 76-83 (Li Liping, Pan Yishan, Ju Xiangyu, et al. Experimental study of the effect of meanstress on anomalously low friction rock burst. Journal of China University of Mining and Technology, 2020, 49(1): 76-83 (in Chinese)

    Li Liping, Pan Yishan, Ju Xiangyu, et al. Experimental study of the effect of meanstress on anomalously low friction rock burst. Journal of China University of Mining and Technology, 2020, 49(1): 76-83 (in Chinese)

    [34] 王洪亮, 葛涛, 王德荣等. 块系岩体动力特性理论与实验对比分析. 岩石力学与工程学报, 2007, 26(5): 951-958 (Wang Hongliang, Ge Tao, Wang Derong, et al. Comparative analysis of dynamic characteristics of block rock mass by theory and experiment. Journal of Rock Mechanics and Engineering, 2007, 26(5): 951-958 (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.012

    Wang Hongliang, Ge Tao, Wang Derong, et al. Comparative analysis of dynamic characteristics of block rock mass by theory and experiment. Journal of Rock Mechanics and Engineering, 2007, 26(5): 951-958 (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.012

    [35] 吴昊, 方秦, 张亚栋等. 一维块系地质块体波动特性的试验和理论研究. 岩土工程学报, 2010, 32(4): 600-611 (Wu Hao, Fang Qin, Zhang Yadong, et al. Experimental and theoretical study on wave characteristics of one-dimensional block geological blocks. Acta Geotechnical Engineering, 2010, 32(4): 600-611 (in Chinese)

    Wu Hao, Fang Qin, Zhang Yadong, et al. Experimental and theoretical study on wave characteristics of one-dimensional block geological blocks. Acta Geotechnical Engineering, 2010, 32(4): 600-611 (in Chinese)

    [36] 李利萍, 唐垒, 潘一山等. 高宽比及应力波扰动对砂岩块体超低摩擦影响试验研究. 岩石力学与工程学报, 2022, 41(7): 1384-1393 (Li Liping, Tang Lei, Pan Yishan, et al. Experimental study on effect of height-width ratio and stress wave disturbance on anomalously low friction of sandstone blocks. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1384-1393 (in Chinese)

    Li Liping, Tang Lei, Pan Yishan, et al. Experimental study on effect of height-width ratio and stress wave disturbance on anomalously low friction of sandstone blocks. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1384-1393 (in Chinese)

    [37] 姜耀东, 王涛, 宋义敏等. 煤岩组合结构失稳滑动过程的实验研究. 煤炭学报, 2013, 38(2): 177-182 (Jiang Yaodong, Wang Tao, Song Yimin, et al. Experimental study on the stick-slip process of coal-rock composite samples. Journal of China Coal Society, 2013, 38(2): 177-182 (in Chinese)

    Jiang Yaodong, Wang Tao, Song Yimin, et al. Experimental study on the stick-slip process of coal-rock composite samples. Journal of China Coal Society, 2013, 38(2): 177-182 (in Chinese)

    [38] 王晓, 张学朋, 李文鑫等. 应力波作用下煤岩层面超低摩擦特征解析理论研究. 煤炭学报, 2024, 49(11): 4495-4507 (Wang Xiao, Zhang Xuepeng, Li Wenxin, et al. Analytical theoretical study on ultra-low friction characteristics of coal rock interfaces under stress wave action. Journal of China Coal Society, 2024, 49(11): 4495-4507 (in Chinese)

    Wang Xiao, Zhang Xuepeng, Li Wenxin, et al. Analytical theoretical study on ultra-low friction characteristics of coal rock interfaces under stress wave action. Journal of China Coal Society, 2024, 49(11): 4495-4507 (in Chinese)

    [39] 刘新荣, 涂义亮, 王鹏等. 基于大型直剪试验的土石混合体颗粒破碎特征研究. 岩土工程学报, 2017, 39(8): 1425-1434 (Liu Xinrong, Tu Yiliang, Wang Peng, et al. Particle breakage of soil-rock aggregate based on large-scale direct shear tests. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434 (in Chinese) doi: 10.11779/CJGE201708009

    Liu Xinrong, Tu Yiliang, Wang Peng, et al. Particle breakage of soil-rock aggregate based on large-scale direct shear tests. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434 (in Chinese) doi: 10.11779/CJGE201708009

    [40] 杨忠平, 李进, 蒋源文等. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报, 2021, 43(8): 1443-1452 (Yang Zhongping, Li Jin, Jiang Yuanwen, et al. Influences of stone content on shear mechanical properties of soil-rock mixture-bedrock interface. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1443-1452 (in Chinese)

    Yang Zhongping, Li Jin, Jiang Yuanwen, et al. Influences of stone content on shear mechanical properties of soil-rock mixture-bedrock interface. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1443-1452 (in Chinese)

图(16)  /  表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 录用日期:  2025-02-01
  • 网络出版日期:  2025-02-01
  • 发布日期:  2025-02-06
  • 刊出日期:  2025-03-17

目录

/

返回文章
返回