EI、Scopus 收录
中文核心期刊
陈建兵, 任宇东, 卢广达. 两尺度视角下准脆性材料的损伤: 从几何不连续度到自由能折减. 力学学报, 待出版. DOI: 10.6052/0459-1879-24-268
引用本文: 陈建兵, 任宇东, 卢广达. 两尺度视角下准脆性材料的损伤: 从几何不连续度到自由能折减. 力学学报, 待出版. DOI: 10.6052/0459-1879-24-268
Chen Jianbing, Ren Yudong, Lu Guangda. Damage in quasi-brittle materials from a two-scale perspective: from geometric discontinuity to free energy reduction. Chinese Journal of Theoretical and Applied Mechanics, in press. DOI: 10.6052/0459-1879-24-268
Citation: Chen Jianbing, Ren Yudong, Lu Guangda. Damage in quasi-brittle materials from a two-scale perspective: from geometric discontinuity to free energy reduction. Chinese Journal of Theoretical and Applied Mechanics, in press. DOI: 10.6052/0459-1879-24-268

两尺度视角下准脆性材料的损伤: 从几何不连续度到自由能折减

DAMAGE IN QUASI-BRITTLE MATERIALS FROM A TWO-SCALE PERSPECTIVE: FROM GEOMETRIC DISCONTINUITY TO FREE ENERGY REDUCTION

  • 摘要: 多尺度损伤演化法则的构建是损伤力学从现象学走向理性坚实基础的核心之一. 然而, 迄今鲜有人注意到, 存在两类损伤变量: 几何意义上表征材料不连续程度的损伤与自由能折减(即材料受力性能退化)意义上的损伤. 如何实现从几何意义上的损伤向能量耗散意义上的损伤转化, 乃是固体破坏问题的枢机. 本文从两尺度视角给出了损伤演化法则及几何意义上的损伤向能量耗散(即受力性能的退化)转化过程的定量刻画, 进一步夯实了非局部宏-微观损伤模型的理性基础. 在本文模型中, 连续体被看作物质点的集合. 宏观物质点与其作用域中的其他物质点组成一系列物质点偶, 由此形成附加于其上的细观结构. 在外部荷载作用下, 物质点的位移引起物质点偶的变形. 当物质点偶的某种几何变形量(如正伸长量)超过临界值时, 微细观损伤开始发展. 细观层次物质点偶的渐进破坏引起宏观固体不连续程度的变化, 最终导致宏观连续体拓扑的改变. 因此, 将微细观损伤在作用域中的累积定义为该点的拓扑损伤, 以刻画宏观固体的不连续程度, 这在本质上是几何意义上的损伤. 另一方面, 损伤发展引起自由能耗散, 导致连续体力学性能的退化. 由于宏观能量耗散是作用域中细观物质点偶因损伤而导致的耗散能量之和, 因此能量(受力)意义上的损伤为作用域中细观物质点偶上的总耗能与总弹性自由能之比. 由此, 在细观层次上实现了从几何意义上的损伤向能量耗散(受力退化)意义上的损伤的转化. 在本文模型中, 不需要经典连续介质损伤力学或断裂相场模型中经验假定的能量退化函数, 物质点处的几何-能量转绎关系由该点的两尺度变形状态决定, 而非固定形式, 从而可能对复杂受力状态具有更好的适应性. 计算结果表明, 本文模型不仅可以捕捉到裂纹萌生、扩展全过程, 而且可以定量反映加载过程中的荷载-位移曲线. 与在宏观层次进行几何-能量转绎的宏-微观损伤模型相比, 本文模型可以更准确地捕捉到试验结果的细节.

     

    Abstract: The construction of multiscale damage evolution law is one of the key ingredients for transitioning from phenomenology to a rational and solid foundation. However, few have noticed that there are actually two types of damage variables: one representing the geometrical discontinuity of materials, and the other representing damage in terms of free energy reduction (i.e., degradation of mechanical behavior of materials). The key of solid failure mechanics lies in how to achieve the transformation from geometric damage to energetic damage. In the current paper, the damage evolution law and the conversion from geometric damage to energy dissipation, i.e., the degree of mechanical degradation, is quantitively prescribed from a two-scale point of view, and the rational foundation of the nonlocal macro–meso-scale damage (NMMD) model is further consolidated. In the present paper, the continuum is considered as a set of material points. Material points within the influence domain interact with others, forming material point pairs, and thus a meso structure is attached to each material point. Under external loading, the material points move, leading to the deformation of material point pairs. When some geometric deformation quantity (e.g., the positive elongation quantity) of material point pairs exceeds a critical value, the damage starts to develop in mesoscopic material point pairs. The progressive fracture of mesoscopic material point pairs leads to the changes in the degree of discontinuity, and finally results in the changes in the topology of macroscopic continuum. Therefore, the topologic damage can be naturally defined as the weighted summation of mesoscopic damage in point pairs within the influence domain, and can be adopted to describe the discontinuity of macroscopic solid. The topologic damage is intrinsically a damage variable in the geometric sense. On the other hand, the damage evolution leads to the dissipation of free energy, resulting in degradation of mechanical properties of materials. As the macroscopic energy dissipation is the summation of the mesoscopic dissipation energy in material point pairs induced by mesoscopic damage evolution, the damage in the energetic sense or mechanical sense can be evaluated by the ratio of total dissipated mesoscopic energy in material point pairs and total elastic free energy. Therefore, the conversion from geometric damage to energy dissipation is conducted on the meso scale via the material point pairs rather than the macro scale. As a result, the empirical energetic degradation function in continuum damage mechanics or phase-field fracture model is not needed anymore in the current model, and the map between the topologic damage and energetic degradation factor is determined by the actual deformation state rather than a fixed function. As a result, this model might have a better adaptivity for the fracture problems with complex strain/stress states. The numerical results indicate that the current model can not only capture the whole process of crack initiation and propagation, but also quantitatively describe the load-deformation curve under loading. Compared with the original NMMD model where the transition from geometric damage to energy dissipation is conducted on the macro scale, the proposed model can better capture the details of the experimental results.

     

/

返回文章
返回