VELOCITY MEASUREMENT IN HYPERSONIC LOW-DENSITY WIND TUNNEL USING FLEET
-
摘要: 高超声速低密度风洞试验对高超声速飞行器的气动特性研究至关重要, 气流速度是其中最受关注的重要参数之一. 高超声速低密度风洞流场具有流速快和密度低等特点, 给速度测量带来很大挑战. 常规测速技术在高超声速低密度流场中应用时局限较多, 而FLEET技术具有不干扰流场和无需外加示踪物等优点, 且直接以风洞工作气体为示踪分子, 有望在高超声速低密度流场速度测量中发挥重要作用. 文章首先研究了不同压强对FLEET信号的影响, 发现随着压强的降低, 光丝中心宽度逐渐展宽; 在低密度条件下FLEET信号仍具有较高强度, 可用于流场的速度测量分析. 随后在Φ0.3 m高超声速低密度风洞中分别对Ma5.0和Ma16.0来流条件开展了FLEET测速实验, 结果表明, 随延迟时间的增加, 光丝中心宽度保持展宽趋势, 荧光信号强度逐渐降低; 与Ma5.0相比, 在Ma16.0条件下荧光信号强度衰减速率更慢和光丝中心宽度更宽. 通过FLEET实验测得的Ma5.0和Ma16.0条件下, 风洞来流速度与皮托管测量值的最大相对偏差分别为0.31%和0.49%, 表明FLEET技术能够为高超声速和低密度稀薄流动速度测量提供有效技术手段.
-
关键词:
- 飞秒激光电子激发标记测速技术 /
- 高超声速低密度风洞 /
- 速度测量 /
- 压强 /
- 飞秒光丝
Abstract: Hypersonic low-density wind tunnel test plays an important role in the study of aerodynamic characteristics of hypersonic vehicles. Velocity is one of the most crucial parameters in hypersonic low-density wind tunnel. While obtaining the flow velocity accurately by conventional velocimetry techniques such as LDV and PIV is particularly difficult since the extremely low density and hypersonic velocity in hypersonic low-density flow. Femtosecond laser electronic excitation tagging (FLEET) velocimetry technique offers an opportunity to overcome this problem. As an unseeded and nonintrusive molecular tagging velocimetry method, FLEET directly probing molecular nitrogen (N2) instead of relying on tracer particles for velocity measurement, thereby immediately avoiding issues with particle lag and non-uniform seeding density. This dissertation seeks to answer the practical question as what measurement performance can be expected of FLEET in different pressures. It turns out that the width of optical filament’s center gradually broadening as the pressure decreases, and the intensity of FLEET signals is strong enough for velocity measurement until the pressure is as low as 90 Pa. This indicates that FLEET is well suited for velocity measurement in low density flow. Subsequently, FLEET velocity measurement experiments are conducted in Φ0.3 m hypersonic low-density wind tunnel in both Ma5.0 and Ma16.0 flow. The results suggest that as the delay time increases, the width of optical filament’s center keep broadening, and the fluorescence signal intensity gradually decreases. In contrast to Ma5.0, the fluorescence signal intensity reduced slower and the width of optical filament’s center are wider in Ma16.0. And compared with velocities measured by pitot tube, the maximum relative deviation measured by FLEET is 0.31% in Ma5.0, while which is 0.49% in Ma16.0. On the whole, FLEET as a relatively recent velocity measurement technique, has been demonstrated as an effective velocimetry method for hypersonic and low-density flow. -
引 言
地面风洞试验技术代表着航空航天领域战略发展实力, 一代风洞技术决定着一代飞行器的研发水平. 目前, 风洞试验是获取飞行器气动力数据最主要的手段[1]. 风洞试验中, 气流速度是研究者们最关注的重要参数之一, 飞行器的气动力、气动热都与气流速度密切相关, 气流速度的测量精度直接影响飞行器模型气动系数测量的准确性, 进而影响飞行器气动性能的预测精度[2]. 针对风洞中气流速度测量的需求, 出现了多种测量技术. 早在1914年, 人们在热交换原理基础上发明了热线热膜流速计(hot wire/hot film anemometry, HWFA)[3], 这一测量方法曾经为湍流的测量和研究做出了极大贡献. 随着技术的发展, 近年来基于激光和图像处理的技术逐渐成为流场速度测量的主要手段, 基于粒子图像的PIV (particle imaging velocimetry)[4]、PTV (particle tracking velocimetry)[5], 基于多普勒效应的LDV (laser Doppler velocimetry)[6]、DGV (Doppler global velocimetry)[7]、IRS (interference Rayleigh scattering)[8], 以及基于分子示踪的MTV (molecular tagging velocimetry)[9]等技术都在各种速度测量中发挥了重要作用.
高超声速低密度风洞主要用于开展稀薄气动力与稀薄气动热等研究, 是研究高超声速飞行器必不可少的地面试验设备, 尤其是随着飞行器的飞行速度越来越快、飞行高度越来越高, 高超声速低密度风洞试验对飞行器气动特性研究也越来越重要. 高超声速低密度风洞流场具有流速快、密度低等特点, 给速度测量带来了很大的挑战. 热线等接触式测量方法会在流场中产生激波干扰; 基于粒子示踪的PIV等技术需要在流场中播撒μm级(或更小)的固液颗粒, 而高速流场中粒子的跟随性无法保证; 此外, 低密度风洞通常以N2或空气为工作气体, 传统MTV技术在低密度风洞中使用需要额外添加特殊的示踪分子, 系统相对复杂; 且因流场密度低, 常导致MTV信号弱、信噪比不高, 影响测量精度. 因此亟需发展新的测试方法, 为高超声速低密度风洞速度测量提供技术手段.
随着飞秒激光技术的发展, 衍生出了一种新的MTV测试技术, 即飞秒激光电子激发标记测速技术(femtosecond laser electronic excitation tagging, FLEET), 这一技术最早是2011年由Michael等[10]提出, 此后国外研究者们在低温风洞[11]、电弧风洞[12]和燃烧流场[13]等多种环境中进行了FLEET技术应用探索. 在高马赫流场研究方面, 主要有Dogariu等[14]在超声速风洞中开展的Ma14湍流边界层测量试验, Fisher等[15]实现的Ma6静风洞速度测量, Dogariu等[16]在AEDC的9号风洞实现的Ma18的速度测量等. 国内主要有中国空气动力研究与发展中心[17]、天津大学[18-20]和西南科技大学[21-22]等单位开展了关于FLEET技术的研究. FLEET技术作为一种非接触测量技术, 测量中不会产生激波干扰, 且测量时直接以风洞工作气体中的N2为示踪分子, 有望在高超声速低密度风洞速度测量中发挥重要作用, 相对于其他高马赫流场, 高超声速低密度风洞流场的密度极低, 可用于示踪标记的N2分子更少, 目前相关研究还比较缺乏. 本文针对高超声速低密度风洞流速快、尤其是密度低的特点, 研究了不同压强对FLEET信号的影响, 验证了FLEET在低密度流场测量的可行性. 在此基础上, 在Φ0.3 m高超声速低密度风洞中开展了FLEET测速实验, 获得了Ma5.0及Ma16.0条件下风洞来流速度测量结果, 为FLEET技术在低密度流场中的应用推广提供借鉴.
1. 实验原理
飞秒激光激发N2分子产生电子荧光的过程如图1[23]所示, 可分为3个步骤: (1)多个入射光子对N2分子进行解离、电离和电子激发; (2)离解的N原子延迟复合, 形成高电子能级的氮分子; (3)高能级分子跃迁返回低能级时发射光子, 产生荧光信号; 经历这种过程的分子被称为标记分子. 飞秒激光激发时, 光子与介质的相互作用发生在电子与其电离源分离的平均自由时间内(大气中约为300 ~ 800 fs[24]), 飞秒激发的能量将沿着光轴沉积为荧光线(或是荧光丝). 实验使用FLEET测速时, 通常由凸透镜聚焦激光产生光丝, 其荧光信号可持续数十μs[25].
近期的实验表明, 在一定条件下FLEET的荧光信号可以持续到300 µs, 且具有较高的信号强度用于流场速度测量[26]. 速度测量时如图2所示, 飞秒激光激发流场中的N2分子产生荧光(即t0时刻的标记线); 流场运动时, 相应的电子荧光标记分子也随之在气流传输方向发生位移, 在荧光信号寿命范围内可以利用探测器记录不同时刻标记分子的位置(如图2中t1 ~ t4时刻); 利用质心法、曲线拟合法和Hessian矩阵法等算法可对FLEET荧光信号位置进行亚像素精度提取[27-29]; 由此, 可基于标记分子的时间-位移关系, 获得流场的速度分布.
2. 实验设备与系统
2.1 风洞设备
实验依托中国空气动力研究与发展中心的Φ0.3 m高超声速低密度风洞进行, 该风洞是一座典型的高压下吹、真空抽吸的暂冲运行风洞, 由气源系统、加热器、稳定段、喷管、试验段、扩压段、冷却器、真空系统和测试系统等部分组成, 喷管出口直径Φ300 mm, 介质为氮气或空气, 实验根据不同的状态可分别选用石墨电阻加热器或储热式加热器进行加热或不加热[30]. 风洞主体如图3[31], 其中试验段顶部及两侧均开有光学观测窗口, 方便开展各种光学测量实验. 本文速度测量实验选用Ma = 5.0, 16.0的型面喷管, 采用氮气为介质, 通过石墨加热器提供热源.
2.2 实验光路系统
实验采用图4所示的光路布局. 其中, 飞秒激光器是光路系统中最核心的设备, 主要提供脉宽120 fs左右的高能激光, 其输出中心波长800 nm, 单脉冲能量约4.5 mJ. 输出激光通过若干反射镜改变传输方向后, 垂直于顶部窗口由上至下进入风洞试验段, 而后通过聚焦透镜(焦距f = 500 mm)在试验段中心聚焦成丝, 常压条件下, 光丝中心宽度(强度的半高宽)小于0.5 mm. 光丝激发风洞上游来流中的N2分子产生长寿命电子荧光, 并随气流向前运动, 不同时刻的电子荧光信号透过试验段侧边的光学窗口后, 被荧光探测系统采集记录并传输至数据处理系统; 为了提高采集频率, 并实现高增益的图像获取, 本实验采用高速像增强器和EMCCD相机组合探测方案, 替代当前FLEET研究中常用的、拍摄帧频相对较低的ICCD相机探测方案. 最后, 经过处理计算可获得测量区域的速度分布结果.
3. 实验结果与分析
3.1 压强对荧光信号的影响
为研究低密度环境中使用FLEET技术进行速度测量的可行性, 首先测量了压强对光丝的影响, 获得了激光器出光时刻延迟5 μs后不同压强下的光丝信号强度, 如图5(a)所示; 提取光丝中心最强信号处(即图5(a)中红线标示位置)的强度分布如图5(b)所示. 当压强为7000 ~
70000 Pa时光丝中心宽度(图5(b)中的“d”)变化不大, 约为0.36 mm; 当压强进一步降低时, 光丝中心宽度出现明显增加, 500, 200和90 Pa条件下对应的光丝中心宽度分别约为1, 1.29和1.42 mm. 当压强降低时, 荧光信号的强度随之降低, 且直到压强低至90 Pa时仍可见清晰的光丝图像, 如图5(c)(由于图5(a)中图像动态范围较宽, 使得低压下的信号分布不明显). 由此可见, FLEET技术能够用于低密度流场速度测量. 低压下荧光强度降低是N2分子数密度降低造成的, 光丝展宽可能是由于低压下分子更易于扩散.3.2 速度测量结果
在Φ0.3 m高超声速低密度风洞中, 首先测量了来流马赫数5.0条件下的速度分布, 实验总温为300 K、总压为0.01 MPa, 实验过程中的环境压强为24 Pa, 采集快门时间为1 μs. 图6从左至右依次给出了延迟0 (基线), 4, 8, 12, 16和20 μs的飞秒光丝图像, 以及各条光丝中心处对应的强度分布. 随着气流的运动, 经过一定延迟时间后的飞秒光丝相对基线产生了明显位移, 延迟时间越长、位移越大. 随延迟时间的增加, 光丝强度迅速降低(在采集基线光丝时, 探测系统的增益值较低, 因此基线强度不可与延迟时间的图像同等相比), 各光丝中心宽度约为1.2 ~ 1.3 mm. 需要说明的是, 图6中光丝分布并非完全竖直, 而是出现小角度倾斜, 这是光路布置时聚焦透镜的中轴线与喷管中轴线未完全垂直, 有小角度倾斜所致; 实验中, 荧光探测系统始终保持水平, 且其轴线垂直于气流方向, 光丝的倾斜不影响速度测量结果.
基于空间坐标与图像像素坐标的映射关系, 选取信号强度较强的延迟4 μs和延迟8 μs光丝, 通过它们相对基线的位移, 计算获得马赫数5.0来流条件下, 试验段中心区域速度分布如图7, 其中延迟4 μs时平均速度约为682.1 m/s, 延迟8 μs时平均速度约为681.7 m/s. 该实验参数下皮托管测量的速度为680 m/s, FLEET测量结果与皮托管测量值的相对偏差分别为0.31%和0.25%. 由图7也可以发现, 在该实验状态下, 能够用于速度计算的光丝长度约为17 mm.
进一步开展了马赫数16.0条件下, 风洞来流速度测量, 实验总温为930 K、总压为1 MPa, 实验过程中的环境压强为2 Pa. 图8为不同延迟时间的飞秒光丝图像及各光丝中心处对应的强度分布, 图中从左至右延迟时间分别为0, 7, 16, 25和30 μs, 经过分析, 图中各光丝的长度约为5.4 mm, 相比于马赫数5.0, 出现了明显的减小. 随延迟时间的增加, 光丝强度降低, 但强度降低的趋势比Ma5.0平缓, 到延迟30 μs时光丝仍具有相对较高的信号强度. 在光丝中心宽度方面, 延迟7 μs时约为3.4 mm, 延迟16 μs时约为3.6 mm. 出现这样的结果, 可能是因为Ma16.0条件下压强更低, 荧光分子之间碰撞淬灭的概率较低, 因此信号强度下降得较缓慢; 且荧光分子更易扩散, 故而光丝中心宽度整体比Ma5.0条件的光丝中心宽度更宽.
根据时间-位移关系, 计算获得Ma16.0来流条件下, 试验段中心区域速度分布如图9, 延迟7, 16, 25和30 μs时平均速度分别为1361.6, 1359.9, 1361.2和1357.8 m/s. 该实验参数下皮托管测量的速度为1355 m/s, FLEET测量结果与皮托管测量值的相对偏差分别为0.49%, 0.36%, 0.46%和0.21%.
4. 结论
本文开展了FLEET技术在高超声速低密度风洞速度测量中的应用研究. 针对高超声速低密度风洞密度低、流速快的特点, 首先基于飞秒激光电子激发标记原理, 研究了不同压强对FLEET信号的影响, 发现随着压强的减小, 飞秒光丝强度逐渐降低, 光丝中心宽度呈展宽趋势, 且直到压强低至90 Pa时仍可见清晰的光丝图像可用于流场测速, 验证了FLEET技术在低密度流场中进行速度测量的可行性. 随后在Φ0.3 m高超声速低密度风洞中开展了FLEET测速实验, 获得了来流Ma5.0和Ma16.0条件下的风洞流场在不同延迟时间下的光丝位置图像. 结果表明, 随延迟时间的增加, 光丝强度逐渐降低, 但相对Ma5.0, 在Ma16.0条件下, 荧光信号强度随延迟时间的增加下降得更慢, 光丝中心宽度更宽; 此外Ma16.0的光丝长度远小于Ma5.0. 在Ma5.0条件下, 实验测得的延迟4和8 μs时平均速度分别为682.1和681.7 m/s, 与皮托管测量速度的相对偏差分别为0.31%和0.25%. Ma16.0时, 实验测量延迟7, 16, 25和30 μs时平均速度分别为1361.6, 1359.9, 1361.2和1357.8 m/s, 与皮托管测量速度的相对偏差分别为0.49%, 0.36%, 0.46%和0.21%. 实验表明, FLEET能够为高超声速和低密度稀薄流动速度测量提供有效技术手段.
-
-
[1] 廖达雄, 孙运强, 吴静怡等. 大型风洞设备的数智化初步研究. 实验流体力学, 2022, 36(1): 1-10 (Liao Daxiong, Sun Yunqiang, Wu Jingyi, et al. Digital intelligent technology research of large wind tunnel equipment. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 1-10 (in Chinese) Liao Daxiong, Sun Yunqiang, Wu Jingyi, et al. Digital intelligent technology research of large wind tunnel equipment. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 1-10 (in Chinese)
[2] 易仕和, 陈植, 朱杨柱等. (高)超声速流动试验技术及研究进展. 航空学报, 2015, 36(1): 98-119 (Yi Shihe, Chen Zhi, Zhu Yangzhu, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 98-119 (in Chinese) Yi Shihe, Chen Zhi, Zhu Yangzhu, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 98-119 (in Chinese)
[3] 盛森之, 徐月亭, 袁辉靖. 热线热膜流速计. 北京: 中国科学技术出版社, 2003: 3-8 (Sheng Senzhi, Xu Yueting, Yuan Huijing, et al. Hot Wire/Hot Film Anemometry. Beijing: China Science and Technology Press, 2003: 3-8 (in Chinese) Sheng Senzhi, Xu Yueting, Yuan Huijing, et al. Hot Wire/Hot Film Anemometry. Beijing: China Science and Technology Press, 2003: 3-8 (in Chinese)
[4] Dammati SS, Kozak Y, Rising C, et al. Numerical investigation of the accuracy of particle image velocimetry technique in gas-phase detonations. Proceedings of the Combustion Institute, 2021, 38: 3671-3681 doi: 10.1016/j.proci.2020.07.102
[5] Kim JT. Three-dimensional particle tracking velocimetry for turbulence applications. Journal of Visualized Experiments Jove, 2016, 108: 53745
[6] 张艳艳, 巩轲, 何淑芳等. 激光多普勒测速技术进展. 激光与红外, 2010, 40(11): 6 (Zhang Yanyan, Gong Ke, He Shufang, et al. Progress in laser Doppler velocity measurement techniques. Laser & Infrared, 2010, 40(11): 6 (in Chinese) Zhang Yanyan, Gong Ke, He Shufang, et al. Progress in laser Doppler velocity measurement techniques. Laser & Infrared, 2010, 40(11): 6 (in Chinese)
[7] Fischer A, Lars B, Jürgen C, et al. Measurements of velocity spectra using time-resolving Doppler global velocimetry with laser frequency modulation and a detector array. Experiments in Fluids, 2009, 47: 599-611
[8] 杨富荣, 陈力, 闫博等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究. 实验流体力学, 2018, 32(3): 82-86 (Yang Furong, Chen Li, Yan Bo, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using interferometric rayleigh scattering diagnostic technique. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86 (in Chinese) Yang Furong, Chen Li, Yan Bo, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using interferometric rayleigh scattering diagnostic technique. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86 (in Chinese)
[9] Li FB, Zhang HB, Bai BF. A review of molecular tagging measurement technique. Measurement, 2020, 171: 108790
[10] Michael JB, Edwards MR, Dogariu A, et al. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air. Applied Optics, 2011, 50(26): 5158-5162 doi: 10.1364/AO.50.005158
[11] Burns RA, Danehy PM. Unseeded velocity measurements around a transonic airfoil using femtosecond laser tagging. AIAA Journal, 2017, 55(12): 4142-4154 doi: 10.2514/1.J056154
[12] Gopal V, Palmquist D, Maddalena L, et al. Fleet velocimetry measurements in the Onr-UTA arc-jet wind tunnel. Exp Fluids, 2021, 62: 212 doi: 10.1007/s00348-021-03306-4
[13] Jiang N, Halls BR, Stauffer HU, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET) velocimetry in flow and combustion diagnostics//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2016. doi: 10.2514/6.2016-3250
[14] Dogariu LE, Dogariu A, Miles RB, et al. Nonintrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC tunnel 9 using FLEET//Proc of the 2018 AIAA Aerospace Sciences Meeting, 2018. doi: 10.2514/6.2018-1769
[15] Fisher JM, Chynoweth BC, Smyser ME, et al. Femtosecond laser electronic excitation tagging velocimetry in a mach six quiet tunnel. AIAA Journal, 2021, 59(2): 768-772 doi: 10.2514/1.J059879
[16] Dogariu A, Dogariu L, Smith MS, et al. Velocity and temperature measurements in Mach 18 nitrogen flow at tunnel 9//AIAA SciTech Forum, 2021, AIAA2021-0020
[17] 陈力, 殷一民, 李玉栋等. 飞秒激光电子激发标记测速在超声速混合层流动测量中的应用. 光学精密工程, 2023, 31(19): 2781-2788 (Chen Li, Yin Yimin, Li Yudong, et al. Velocity measurements in supersonic mixing layer using femtosecond laser electronic excitation tagging. Optics and Precision Engineering, 2023, 31(19): 2781-2788 (in Chinese) doi: 10.37188/OPE.20233119.2781 Chen Li, Yin Yimin, Li Yudong, et al. Velocity measurements in supersonic mixing layer using femtosecond laser electronic excitation tagging. Optics and Precision Engineering, 2023, 31(19): 2781-2788 (in Chinese) doi: 10.37188/OPE.20233119.2781
[18] 张大源, 李博, 高强等. 飞秒激光光谱技术在燃烧领域的应用. 实验流体力学, 2018, 32(1): 1-10 (Zhang Dayuan, Li Bo, Gao Qiang, et al. Application of femtosecond-laser spectrum technology in combustion field. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1-10 (in Chinese) Zhang Dayuan, Li Bo, Gao Qiang, et al. Application of femtosecond-laser spectrum technology in combustion field. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1-10 (in Chinese)
[19] 朱志峰, 李博, 高强等. 飞秒激光电子激发标记测速方法及其在超声速射流中的试验验证. 空气动力学学报, 2020, 38(5): 880-886 (Zhu Zhifeng, Li Bo, Gao Qiang, et al. Femtosecond laser electronic excitation tagging for velocity measurement in supersonic jet. Acta Aerodynamica Sinica, 2020, 38(5): 880-886 (in Chinese) doi: 10.7638/kqdlxxb-2018.0150 Zhu Zhifeng, Li Bo, Gao Qiang, et al. Femtosecond laser electronic excitation tagging for velocity measurement in supersonic jet. Acta Aerodynamica Sinica, 2020, 38(5): 880-886 (in Chinese) doi: 10.7638/kqdlxxb-2018.0150
[20] Li B, Zhang DY, Liu JX, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics. Applied Sciences, 2019, 9(9): 1906 doi: 10.3390/app9091906
[21] Wang JX, Chen S, Chen L, et al. Measurement of FLEET influence on ambient air temperature by Rayleigh scattering. Optics and Laser Technology, 2022, 145: 107456 doi: 10.1016/j.optlastec.2021.107456
[22] Yang WB, Zhou JN, Chen L, et al. Temporal characterization of heating in femtosecond laser filamentation with planar Rayleigh scattering. Optics Express, 2021, 29(10): 14883-14893 doi: 10.1364/OE.418654
[23] Paul MD, Ross AB, Daniel TR, et al. FLEET velocimetry for aerodynamics. Annual Review of Fluid Mechanics, 2022, 54(1): 525-553
[24] Chin SL. Femtosecond Laser Filamentation. New York: Springer-Verlag, 2009
[25] DeLuca NJ, Miles RB, Kulatilakaz WD, et al. Femtosecond laser electronic excitation tagging (FLEET) fundamental pulse energy and spectral response//AIAA 30th Aerodynamic Measurement Technology and Ground Testing Conference, Atlanta, GA. AIAA Pap, 2014: 2014-2227
[26] 杨文斌, 陈力, 闫博等. 基于飞秒激光电子激发标记测速技术的剪切流场速度测量. 实验流体力学, 2022, 36(4): 94-102 (Yang Wenbin, Chen Li, Yan Bo, et al. Transient velocity measurement of shear flow using femtosecond laser electronic excitation tagging. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94-102 (in Chinese) Yang Wenbin, Chen Li, Yan Bo, et al. Transient velocity measurement of shear flow using femtosecond laser electronic excitation tagging. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 94-102 (in Chinese)
[27] 王春艳. 激光测量中光条关键技术研究. [博士论文]. 长春: 吉林大学, 2014 (Wang Chunyan. Research on key technologies of light stripe in laser measurement. [PhD Thesis]. Changchun: Jilin University, 2014 (in Chinese) Wang Chunyan. Research on key technologies of light stripe in laser measurement. [PhD Thesis]. Changchun: Jilin University, 2014 (in Chinese)
[28] Lavoie P, Ionescu D, Petriu EM. 3D object model recovery from 2D images using structured light. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 437-443 doi: 10.1109/TIM.2004.823320
[29] Steger C. An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125 doi: 10.1109/34.659930
[30] 李中华, 李志辉, 陈爱国等. 低密度风洞瑞利散射测速实验中纳米粒子跟随性数值分析. 力学学报, 2017, 49(6): 1243-1251 (Li Zhonghua, Li Zhihui, Chen Aiguo, et al. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251 (in Chinese) Li Zhonghua, Li Zhihui, Chen Aiguo, et al. Numerical analyzition of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251 (in Chinese)
[31] 陈爱国, 王杰, 李中华等. 脉冲电子束荧光技术测量稀薄流场速度研究. 气体物理, 2021, 6(5): 67-71 (Chen Aiguo, Wang Jie, Li Zhonghua, et al. Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique. Physics of Gases, 2021, 6(5): 67-71 (in Chinese) Chen Aiguo, Wang Jie, Li Zhonghua, et al. Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique. Physics of Gases, 2021, 6(5): 67-71 (in Chinese)