A COUPLED SECOND-ORDER GTS-MOC SOLUTION FOR TRANSIENT FLOWS IN COMPLEX PIPES
-
摘要: 经典的特征线法(method of characteristics, MOC)因其简单方便, 边界条件易于耦合求解, 常应用于有压管道瞬变流方程的数值求解. 对于复杂管道系统, 受库朗数限制, 该方法往往需要进行波速调整或插值求解, 可能出现严重的累积误差和数值耗散. 有限体积法Godunov格式(Godunov type scheme, GTS)对管道内部库朗数具有良好的鲁棒性, 但边界条件采用精确黎曼不变量方法, 处理复杂. 同时, 以往水锤计算通常仅考虑稳态摩阻, 低估了瞬变压力的衰减. 文章提出并推导了考虑动态摩阻的GTS-MOC耦合模型, 使用二阶GTS计算管道内部控制体, 在复杂边界处采用耦合GTS-MOC方法处理. 首先, 针对串联管和分叉管边界条件, 对精确黎曼不变量方法和MOC方法进行了理论分析. 推导结果表明, 在马赫数(Ma)较小的管道瞬变流求解中, 两种边界处理方法结果一致, 与实验结果对比分析, 验证了耦合格式求解的准确性. 最后, 将耦合格式分别与GTS和MOC进行比较. 结果证明, 耦合格式可以达到和GTS相同的精度, 同时, 串联管道系统中MOC线性插值法和波速调整法均存在数值耗散且随时间增加更明显, 耦合格式结果具有准确性和稳定性, 与精确解更吻合.Abstract: The classical method of characteristics (MOC) is often applied to numerically solve the transient flow equations of pressurized pipelines because of its simplicity and convenience, and the boundary conditions are easy to be coupled and solved. For complex pipeline systems, limited by the Courant number, the method often requires wave velocity adjustment or interpolation for solving, which may result in serious cumulative errors and numerical dissipation. The finite volume method Godunov type scheme (GTS) has good robustness to the internal Coulomb number of the pipeline, but the boundary condition adopts the exact Riemann invariant method, which is complicated to handle. Meanwhile, previous water hammer calculations usually only consider the steady-state moiré resistance, which underestimates the attenuation of transient pressure. In this paper, a coupled GTS-MOC model considering unsteady friction is proposed and derived to compute the internal control body of the pipe using the second-order GTS, which is handled by the coupled GTS-MOC method at the complex boundary. First, the exact Riemann invariant method and the MOC method are theoretically analyzed for the tandem and bifurcated pipe boundary conditions. The derivation results show that the results of the two boundary treatments are consistent in the transient flow solution for pipes with small Mach number (Ma), and the accuracy of the coupled format solution is verified by comparing and analyzing with the experimental results. Finally, the coupled format is compared with GTS and MOC, respectively. The results prove that the coupled format can achieve the same accuracy as GTS, and at the same time, the numerical dissipation exists in both the MOC linear interpolation method and the wave velocity adjustment method in the series pipeline system and increases more obviously with time, and the results of the coupled format have the accuracy and stability, which are more consistent with the exact solution.
-
Keywords:
- Godunov /
- method of characteristics /
- transient pipe flow /
- unsteady friction
-
引 言
在长距离调水工程、水电站和泵站等有压输水系统中, 因系统启动、停运及阀门开关等原因导致流量变化, 进而发生水力瞬变. 在此过程中, 如果水锤防护措施或水力元件操作不合理, 极易引起异常的压力波动, 而导致输水管线结构破坏[1-4]. 因此, 在实际管道系统的设计、施工、管理和维护等整个生命周期中, 准确、稳健和高效的瞬变流模拟对输水系统安全稳定运行、实现智慧精准化调度运行极为重要[5-8].
目前, 经典的特征线法(method of characteristics, MOC)因其应用方便而被广泛用于模拟实际复杂管道系统中的水力瞬变[9-11]. 然而, 在实际工程中, 经常会出现不同材质的管段或者支管、短管, 在采用固定网格的特征线法进行计算分析时, 需要通过线性插值法或波速调整法来满足库朗数Cr = 1的条件. 然而, 这会使得计算变得复杂而且可能引起较大的计算误差, 并且随着时间的变化, 数值耗散会越来越严重[12]. 有限体积法Godunov格式(Godunov type scheme, GTS)已被用于水力瞬态模拟. Zhao等[13]和Ghidaoui[14]使用一阶和二阶GTS模拟水锤, 并证明当库朗数Cr = 1时, 二阶GTS、一阶GTS和MOC的模拟结果都与精确解一致. 但是当库朗数Cr < 1时, 二阶GTS结果更准确、更稳定, 且数值耗散更小, 计算效率更高. Zhou等[15-16]将二阶GTS成功应用于离散蒸汽空穴模型, 与现有的MOC相比, 二阶GTS的计算结果与实验数据更吻合, 避免了虚假的压力峰值. Toro[17]指出二阶GTS在求解双曲型系统时具有显著的优势: (1)质量和动量守恒始终成立; (2)对于不连续问题可有效避免虚假震荡; (3)便于引入非线性对流项. 然而, 这种方案会受限于边界条件处理的复杂性, 尤其是复杂的水力设备, 如水轮机和水泵等[18]. 因此考虑将MOC和GTS的优点结合起来, 构造GTS-MOC耦合格式. GTS用于内部单元的计算, 而边界可由MOC处理.
在实际管道中, 动态摩阻的影响越来越受到重视, 准确地模拟管道中水锤波的衰减可为后续水力安全评估及实时监测分析提供支持[19-20]. 常见的动态摩阻模型主要有两种: (1)基于瞬时加速度类模型(如Brunone模型[21]); (2)基于加权函数类模型. 瞬时加速类虽构成简单但属于经验性模型, 而加权函数类模型被公认为计算动态摩阻损失的精确模型. Zielke[22]基于层流推导出适用于管道瞬变的卷积加权模型, 考虑了管道历史流速和加速度对当前时刻流态的影响. Vardy等[23-24]推导出了适用于紊流的瞬态摩阻加权函数模型. 为了能准确描述动态摩阻的影响, 提高计算效率, 很多学者采用新的加权函数对模型进行了研究修改, 提出了高效简化卷积模型, 如Trikha-Vardy-Brown (TVB)[24]模型. Zhou等[25-26]成功地将现有各种动态摩阻模型应用于GTS, 并建议将Brunone和TVB模型进一步应用于水力瞬态.
本文针对复杂管道中的瞬变流模拟提出了一种简单、精确和稳定的GTS-MOC耦合求解方法, 并采用TVB简化形式加权类动态摩阻模型. 该方案在管道内部单元中使用二阶GTS格式, 在复杂边界中使用GTS-MOC耦合格式. 针对串联管和分叉管边界条件, 对精确黎曼不变量方法和MOC方法进行了理论分析. 与实验结果对比, 验证了耦合格式的准确性. 最后, 将耦合格式分别与GTS和MOC进行比较, 以研究其稳定性.
1. 考虑动态摩阻GTS-MOC耦合格式
1.1 控制方程
考虑动态摩阻的水锤连续性方程和动量方程可写成如下[9-10]
$$\qquad\qquad \frac{{\partial H}}{{\partial t}} + V\frac{{\partial H}}{{\partial x}} + \frac{{{a^2}}}{g}\frac{{\partial V}}{{\partial x}} = 0 $$ (1) $$\qquad\qquad \frac{{\partial V}}{{\partial t}} + V\frac{{\partial V}}{{\partial x}} + g\frac{{\partial H}}{{\partial x}} + 4\frac{{\mathop \tau \nolimits_w }}{{\rho D}} = 0 $$ (2) 式中, H为测压管水头; V为截面平均流速; a为波速; g为重力加速度; x为沿管道轴线的距离; t为计算时间; D为管道直径; ρ为液体密度; τw为管壁剪应力, τw = τs + τu, 其中τs和τu分别表示稳态摩阻和动态摩阻.
通过采用黎曼问题的求解方法, 可以用非守恒矩阵形式表示控制方程式(1)和式(2)[17]
$$ \left.\begin{split} & \frac{{\partial {\boldsymbol{u}}}}{{\partial t}} + \frac{{\partial {\boldsymbol{f}}({\boldsymbol{u}})}}{{\partial x}} = {\boldsymbol{s}}({\boldsymbol{u}}),{\boldsymbol{f}}({\boldsymbol{u}}) = \bar {\boldsymbol{A}} {\boldsymbol{u}} \\ & {\boldsymbol{u}} = \left( \begin{gathered} H \\ V \\ \end{gathered} \right),\bar {\boldsymbol{A}} = \left( {\begin{array}{*{20}{c}} {\bar V }&{{{{a^2}} \mathord{\left/ {\vphantom {{{a^2}} g}} \right. } g}} \\ g&{\bar V } \end{array}} \right),{\boldsymbol{s}}({\boldsymbol{u}}) = \left( \begin{gathered} 0 \\ - g({J_Q} + {J_U}) \\ \end{gathered} \right) \end{split}\right\} $$ (3) 其中, JQ为稳态摩阻; JU为动态摩阻; u为求解向量; f(u)为控制体通量矢量; $ \bar {\boldsymbol{A}} $为系数矩阵; s(u)为源项, 若s(u) = 0, 则该系统为常系数线性齐次系统; $ \bar {V} $是V的平均值, 可通过算术平均值或黎曼问题的解来确定[13]. 如果$ \bar {V} $ = 0, 则可以忽略对流项, 变成经典的水锤控制方程.
由于基于TVB的简化卷积模型精度高、效率高, 建议将其用于动态摩阻项[24]. 动态壁面剪应力可表示为
$$ {\tau _u}(t + \Delta t) \approx \frac{{2\rho v}}{R}\sum\limits_{i = 1}^N {{Y_{ai}}(t + \Delta t)} $$ (4) $$\begin{split} & {Y_{ai}}(t + \Delta t) = {Y_{ai}}(t){{\mathrm{e}}^{ - ({n_i}v/R}}^{^2)\Delta t} + \\ &\qquad \frac{{{m_i}{R^2}}}{{{n_i}v\Delta t}}\left(1 - {{\mathrm{e}}^{ - ({n_i}v/R}}^{^2)\Delta t}\right)\left(V(t + \Delta t) - V(t)\right) \end{split} $$ (5) 其中, ν是运动黏滞系数; R是管道半径; mi和ni是加权系数[24].
式(3)中的数值解可通过所提出的GTS-MOC耦合格式求解, 其中内部控制体采用二阶GTS, 而边界采用MOC. 如图1所示, 每根管道沿x轴被分为Nj个控制体, 建立计算网格. 每个控制体长Δxj, 计算时间步长为Δt, 其中j为管道编号, $ {{\boldsymbol{U}}}_{j,i}^{n} $是第j个管道区间[i−1/2, i + 1/2]中u的平均值, 上标n表示t时刻.
1.2 GTS内部网格求解格式
对于第j个管道, 第i (1≤i≤Nj)个控制体, 其左右边界分别记为i−1/2和i + 1/2. 为求解该黎曼问题, 沿x方向从控制边界i−1/2到控制边界i + 1/2对公式(3)的两边进行积分得到以下公式
$$ {\boldsymbol{U}}_{j,i}^{n + 1} = {\boldsymbol{U}}_{j,i}^n - \frac{{\Delta t}}{{\Delta {x_j}}}({\boldsymbol{f}}_{j,i + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^n - {\boldsymbol{f}}_{j,i - {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^n) + \frac{{\Delta t}}{{\Delta {x_j}}}\int_{i - 1/2}^{i + 1/2} {\boldsymbol{s}} {\mathrm{d}}x $$ (6) 其中, $ {\boldsymbol{f}}_{j,i + 1/2}^{n} $和$ {\boldsymbol{f}}_{j,i-1/2}^{n} $分别表示第j个管道中第i + 1/2和第i−1/2个控制界面在当前时步的数值通量. 因此, 下一个计算时步n + 1的向量$ {\boldsymbol{U}}_{j,i}^{n + 1} $涉及计算该单元中两个界面的通量和源项.
对于有限体积法GTS格式, 建议通过黎曼问题的精确解来获得每个控制体边界的通量[27-28]. 具有常数系数的线性齐次双曲系统的黎曼问题可描述为以下初值问题[17].
$$\left.\begin{split} & \frac{{\partial {\boldsymbol{u}}}}{{\partial t}} + \frac{{\partial {\boldsymbol{f}}({\boldsymbol{u}})}}{{\partial x}} = {\boldsymbol{0}} \\ & {{\boldsymbol{u}}^n}(x) = \left\{ \begin{aligned} & {\boldsymbol{U}}_L^n,x < {x_{i + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \\ & {\boldsymbol{U}}_R^n,x > {x_{i + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \end{aligned} \right. \end{split}\right\} $$ (7) 其中, $ {\boldsymbol{U}}_{L}^{n} $和$ {\boldsymbol{U}}_{R}^{n} $分别是n时刻u在i + 1/2界面左侧和右侧的平均值. 通过求解特征矩阵$ \left|\bar {\boldsymbol{A}}-{\bar {\lambda }}_{k}\boldsymbol{I}\right| = 0 $可以得到两个独立的特征值$ {\bar {\lambda }}_{1} = \bar {V}-a $和$ {\bar {\lambda }}_{2} = \bar {V} + a $. 根据Rankine-Hugoniot条件$ \boldsymbol{f}\left(\boldsymbol{u}\right)\equiv \bar {\boldsymbol{A}}\Delta \boldsymbol{u} = {\bar {\lambda }}_{k}\Delta \boldsymbol{u} $, 可以得到黎曼问题的精确解, 因此控制体界面i + 1/2的通量可写成
$$ \begin{split} &{\boldsymbol{f}}_{j,i + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^n = \bar {\boldsymbol{A}} _{j,{{i + 1} \mathord{\left/ {\vphantom {{i + 1} 2}} \right. } 2}}^n\left\{ \left( {\begin{array}{*{20}{c}} {{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}&{{{{a_j}} \mathord{\left/ {\vphantom {{{a_j}} {2g}}} \right. } {2g}}} \\ {{g \mathord{\left/ {\vphantom {g {2{a_j}}}} \right. } {2{a_j}}}}&{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \end{array}} \right){\boldsymbol{U}}_L^n +\right.\\ &\qquad \left.\left( {\begin{array}{*{20}{c}} {{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}&{{{ - {a_j}} \mathord{\left/ {\vphantom {{ - {a_j}} {2g}}} \right. } {2g}}} \\ {{{ - g} \mathord{\left/ {\vphantom {{ - g} {2{a_j}}}} \right. } {2{a_j}}}}&{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \end{array}} \right){\boldsymbol{U}}_R^n \right\}\end{split} $$ (8) 向量$ {\boldsymbol{U}}_{L}^{n} $和$ {\boldsymbol{U}}_{L}^{n} $采用分段多项式重构近似, 数值方案的阶数取决于多项式类型. 对于GTS, 引入MUSCL-Hancock类型是为了在空间和时间上达到二阶精度. 为避免线性插值中数据重构时出现虚假震荡现象, 引入MINMOD斜率限制器函数[17], 以避免这些数值振荡. 因此, 可以得到控制体每个界面的数值通量. 源项采用显式二阶Runge-Kutta离散化, 源项的允许时间步长受限于CFL (Courant-Friedrich-Lewy)条件以及二阶龙格-库塔离散的稳定性约束[25].
1.3 GTS-MOC耦合求解边界
以往的学者对GTS的精度、鲁棒性和效率进行了深入研究, 并证明其在单管中的性能优于经典MOC[29-30]. 将GTS应用于实际管道系统边界的复杂性在于: (1) GTS边界处理涉及多个虚拟单元体求解; (2)许多复杂元件求解结合了元件控制方程和MOC边界方程, 如水泵和水轮机等元件, 保留MOC格式处理边界条件具有简便性. 因此, 本文提出边界处的GTS-MOC耦合格式求解方法. GTS和MOC这两种方法都是基于黎曼不变量, 因此这种耦合方法非常实用且具有可行性. 首先分别在串联和分支交界处推导出精确黎曼不变量的FVM和边界MOC.
在第j和j + 1管道之间的串联交界处, 基于式(8)中精确黎曼解的FVM黎曼不变式可写成[13]
$$ H_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} + \frac{{{a_j}}}{g}V_{j,{{{N_j} + 1} \mathord{\left/ {\vphantom {{{N_j} + 1} 2}} \right. } 2}}^{n + 1} = H_{j,{N_j}}^n + \frac{{{a_j}}}{g}V_{j,{N_j}}^n $$ (9) $$ H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} - \frac{{{a_{j + 1}}}}{g}V_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 1,1}^n - \frac{{{a_{j + 1}}}}{g}V_{j + 1,1}^n $$ (10) 根据连续方程和动量方程, 串联交界处的流量和压力分别为$ {Q}_{j,{N}_{j} + 1/2}^{n + 1} = {Q}_{j + 1,1/2}^{n + 1} = {A}_{j}{V}_{j,{N}_{j} + 1/2}^{n + 1} = {A}_{j + 1}{V}_{j + 1,1/2}^{n + 1} $, $ {H}_{j,{N}_{j} + 1/2}^{n + 1} = {H}_{j + 1,1/2}^{n + 1} $,其中Aj为第j根管道的横截面积. 串联交界处的流量和压力可写成
$$ \begin{split} & Q_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = Q_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ &\qquad \frac{{H_{j,{N_j}}^n - H_{j + 1,1}^n + \dfrac{{{a_j}}}{g}V_{j,{N_j}}^n + \dfrac{{{a_{j + 1}}}}{g}V_{j + 1,1}^n}}{{\dfrac{{{a_j}}}{g}{A_j} + \dfrac{{{a_{j + 1}}}}{g}{A_{j + 1}}}} \end{split} $$ (11) $$ \begin{split} & H_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ & \frac{{\left(H_{j,{N_j}}^n + \dfrac{{{a_j}}}{g}V_{j,{N_j}}^n\right)\dfrac{{{a_j}}}{g}{A_j} + \left(H_{j + 1,1}^n - \dfrac{{{a_{j + 1}}}}{g}V_{j + 1,1}^n\right)\dfrac{{{a_{j + 1}}}}{g}{A_{j + 1}}}}{{\dfrac{{{a_j}}}{g}{A_j} + \dfrac{{{a_{j + 1}}}}{g}{A_{j + 1}}}} \end{split} $$ (12) 当交界处两侧的管道尺寸相同(Aj = Aj+1)时, 它与Zhao等[13]所示的向量相同.
对于MOC, 为了获得串联交界处的压力和流量, 需要同时求解两个未知数的相容方程[1], 即
$$ {C^ + }:H_{j,{{{N_j} + 1} \mathord{\left/ {\vphantom {{{N_j} + 1} 2}} \right. } 2}}^{n + 1} = {C_{j,A}} - {B_{j,A}}Q_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} $$ (13) $$ {C^ - }:H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = {C_{j + 1,B}} + {B_{j + 1,B}}Q_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} $$ (14) 其中, Cj,A, Bj,A, Cj+1,B, Bj+1,B是应用上述方程时的已知系数, 可通过以下方程求得
$$ \left.\begin{split} & {B_{j,A}} = {B_j} + {R_j}|Q_{j,{N_j}}^n| \\ & {C_{j,A}} = H_{j,{N_j}}^n + {B_j}Q_{j,{N_j}}^n - \frac{{4{a_j}\Delta t}}{{pg{D_j}}}{\tau _u} \\ & {B_{j + 1,B}} = {B_{j + 1}} + {R_{j + 1}}|Q_{j + 1,1}^n| \\ & {C_{j,B}} = H_{j + 1,1}^n - {B_{j + 1}}Q_{j + 1,1}^n + \frac{{4{a_j}\Delta t}}{{pg{D_j}}}{\tau _u} \end{split} \right\}$$ (15) 其中, 第j管道特性阻抗Bj = aj/(gAj); 管道阻抗系数Rj = fjajΔt/(2gDjAj2). 引入式(15), 相容方程式(13)和式(14)变为
$$ \begin{split} & {C^ + }:H_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} + \frac{{{a_j}}}{g}V_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ &\qquad H_{j,{N_j}}^n + \frac{{{a_j}}}{g}V_{j,{N_j}}^n - {R_j}|Q_{j,{N_j}}^n|Q_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \end{split} $$ (16) $$ \begin{split} & {C^ - }:H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} - \frac{{{a_{j + 1}}}}{g}V_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ &\qquad H_{j + 1,1}^n - \frac{{{a_{j + 1}}}}{g}V_{j + 1,1}^n + {R_{j + 1}}|Q_{j + 1,1}^n|Q_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \end{split} $$ (17) 式(16)和式(17)与式(9)和式(10)中的FVM黎曼变量完全相同, 只是在MOC中加入了额外的摩阻项, 表示串联交界处左侧或右侧单个体积的摩擦损失. 在输水管道系统中, 马赫数的取值范围一般是10−4 ~ 10−3 的尺度区间. FVM为了边界处理简便且不降低精度, 忽略左侧或右侧单元体Δx的摩擦损失, 一般相对整个系统长度来讲微乎其微, 因此, 摩阻项在FVM中可以忽略不计. GTS-MOC耦合格式相比FVM考虑了边界损失
$$\begin{split} & \frac{{{R_j}|Q_{j,{N_j}}^n|Q_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1}}}{{{a_j}{{\Delta V} \mathord{\left/ {\vphantom {{\Delta V} g}} \right. } g}}} \approx \frac{{{f_j}\Delta {x_j}V_{j,{N_j}}^n}}{{2{D_j}\Delta V}}\frac{{V_{j,{N_j}}^n}}{{{a_j}}} = \\ &\qquad \frac{{{f_j}\Delta {x_j}V_{j,{N_j}}^n}}{{2{D_j}\Delta V}}Ma \ll 1 \end{split} $$ (18) MOC边界可以与GTS边界耦合, 作为边界中的精确黎曼解. 串联接头的压力和流量为
$$ H_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \frac{{{C_{j,A}}{B_{j + 1,B}} + {C_{j + 1,B}}{B_{j,A}}}}{{{B_{j,A}} + {B_{j + 1,B}}}} $$ (19) $$ Q_{j,{N_j} + {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = Q_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \frac{{{C_{j,A}} - {C_{j + 1,B}}}}{{{B_{j,A}} + {B_{j + 1,B}}}} $$ (20) 假设忽略串联交界处左右两个体积中的摩擦项, 结果与式(11)和式(12)相同. 对于分叉管交界处, 采用GTS和MOC边界可以得到相同的结果. 详情见附录A.
2. 耦合格式的验证
为了验证本文模型在不同规模管道系统中模拟水力瞬变的正确性, 在实验系统进行实验验证(见图2和图3). 实验装置组成从上游到下游依次是压力罐、管路、电磁流量计、压力传感器和手动阀门. 中间段以环绕形式固定的供水管道组成. 实验系统管道是一根长241.52 m的钢管, 管道内径0.05 m, 壁厚0.0035 m. 本实验的水锤现象主要通过控制管道下游阀门快速关闭产生, 阀门处设置的压力传感器记录了水锤压力的变化曲线. 实验采用的高精度压力传感器型号为BYP300, 主要技术参数为: 输出4 ~ 20 mA, 精度0.2%, 测量范围0 ~ 1.0 MPa. 电磁流量计的测量范围是0.707 ~ 10 m3/h, 链接法兰DN50. 同时数据采集系统主要使用LabVIEW软件操作, 型号为cDAQ-9178, 采样频率2000 Hz. 实验工况基本参数如表1所示, 阀门处压力传感器测得的压力变化结果与数值模拟结果见图4.
表 1 实验工况基本参数Table 1. Basic parameters of experimental working conditionsCase
No.Pipe
length
L/mPipe
diameter
D/mSteady friction
coefficient
fWave
speed
a/(m·s−1)Steady state
flow rate
V/(m·s−1)1 241.52 0.05 0.014 1328 0.280 2 241.52 0.05 0.014 1328 0.354 如图4所示, 针对实验下的工况1和工况2, 本文采用的考虑动态摩阻二阶GTS-MOC耦合模型均能准确模拟出各个波动周期的压力峰值、波动周期和压力衰减量, 与实验结果基本一致, 且在整个计算时间域内均能较好反映水锤波的瞬变过程.
3. 耦合格式分析
通过串联和分叉管系统下, 耦合格式与GTS比较, 以验证耦合格式的准确性. 其次, 耦合格式与MOC进行对比分析.
3.1 与GTS相比, 验证耦合格式
如图5所示, 引入了一个简单管道系统, 包括一个由内置阀门(见图5)决定的串联或分叉管连接点, 以验证耦合格式的准确性. 表2列出了各管道的几何和物理参数.
表 2 管道系统的几何和物理参数Table 2. Geometrical and physical parameters for pipe systemPipe No. Pipe length
Lj/mPipe diameter
Dj/mWave speed
aj/(m·s−1)Steady friction
coefficient fj1 100 0.1 1000 0.03 2 100 0.1 910 0.03 3 100 0.1 1000 0.03 工况1, 在串联管道系统中(内置阀门完全关闭), 初始流量Q0 = 0.003 m3/s从管道1流向管道2. 当下游阀门瞬时关闭时, 水锤波向上游传播, 并在串联交界处反射和传输. 工况2, 在支管系统中(内置阀门全开), 初始流量Q0 = 0.003 m3/s从管道1流向管道2和管道3. 当下游阀门瞬时关闭时, 水锤波传播到上游水库和下游水库, 并在支管交界处反射和传播. 通过耦合格式和二阶GTS得到的下游阀门压力曲线如图6所示. 采用无量纲压力H* = (H−H0)/(a2V0/g), 其中H0和V0分别为初始压力和速度. 图6(a)和图6(b)表明, 串联和分叉管道中, 耦合格式可以达到和二阶GTS一致的压力波动曲线.
3.2 与MOC相比的稳定性和效率
MOC现已广泛应用于复杂管道系统的水力瞬态计算. 通常采用线性内插法或波速调整法, 从而实现相同时间步长, 并确保每个管道的整数网格数[1]. 图5介绍了两个串联管道系统的案例, 比较3种计算方法: 线性内插法的MOC方法、波速调整方法的MOC方法、本文提出的耦合方法.
表3列出了精确解、线性内插、波速调整和耦合格式的波速、库朗数(Cr)和管道中的网格数. MOC采用的精确解法增加了管道网格数, 使Cr = 1和波速保持不变, 而内插法、波速调整和耦合格式采用了相对较小的网格数, 但改变了波速或Cr. 图7(a)和图7(b)分别显示了情况1和情况2的压力结果.
表 3 串联管道系统中几种离散方案的波速、库朗数和网格数Table 3. Wave speed, Courant number, and reach number for several discretization schemes in the series pipes systemCase
No.Schemes Wave speed
a1/(m·s−1)Wave speed
a2/(m·s−1)Courant number
Cr1Courant number
Cr2Reach number
N1Reach number
N21 exact 1000 1260 1 1 63 50 space-line interpolation 1000 1260 1 0.945 20 15 coupled scheme 1000 1260 1 0.945 20 15 2 exact 1000 970 1 1 97 100 wave-speed adjustment 1000 952 1 1 20 21 coupled scheme 1000 970 1 0.97 20 20 对于工况1, 为了减少计算网格数并获得管道2接近1的Cr, 管道1和管道2的线性内插和耦合格式的网格数设置为精确解的1/3左右. 图6(a)中的压力曲线表明, 在前两个时段, 3条压力曲线匹配良好. 然而, 与所提出的耦合格式相比, MOC的线性插值法的数值耗散更为严重, 而且随着时间的推移, 问题的程度也越来越严重. 为了定量分析结果, 这里引入了均方根误差(RMSE)和纳什-苏特克利夫效率(NSE)来确定误差的大小. 随着误差的减小, RMSE值减小, NSE更接近于1. 与精确解相比, 内插法的RMSE和NSE分别为0.208和0.935, 而耦合格式的RMSE和NSE分别为0.148和0.967.
对于工况2, 波速调整方法将管道2中的波速改为952 m/s, 耦合格式中管道2中的库朗数Cr为0.97. 如图6(b)所示, 耦合格式的压力曲线可以重现精确解的周期和峰值大小, 而波速调整方法中由于管道2中波速的变化, 与精确解相比, 相位偏移严重, 峰值压力不一致. 情况2中的波速变化率仅为1.8%, 远小于波速15%的允许变化率(Wylie等[9]). 与精确解相比, 波速调整方法的RMSE和NSE分别为0.68和0.41, 而耦合格式分别为0.128和0.979.
因此, 耦合格式比MOC的线性内插法和波速调整法更稳定, 而且能给出精确解的更多细节. 同时, 增加网格数会提高MOC的精度和稳定性, 在精度相同的条件下, 耦合格式更有效.
4. 结论
(1)本文针对复杂管道瞬变流问题, 提出并推导了考虑动态摩阻的GTS-MOC耦合模型. 管道内部控制体采用有限体积法Godunov求解, 边界采用MOC求解. 同时设计搭建了水锤实验系统, 实验验证了模型的准确性.
(2)与二阶GTS对比, 本文提出的GTS-MOC耦合格式模拟结果与二阶GTS一致, 这说明, 该耦合格式既保证了计算精度又避免了繁琐边界处理和计算.
(3)分析库朗数对模拟结果的影响, 当库朗数Cr < 1时, 通过与MOC的线性插值法和波速调整法相比, MOC两种方法均存在数值耗散且随时间增加更明显, 而所提出的GTS-MOC耦合格式模拟结果具有准确性和稳定性, 能够避免数值耗散, 且与精确解更吻合.
附录A
对于液体从管道j流向管道j + 1和管道j + 2的分支交界处, FVM 黎曼变量可表示为
$$\left. \begin{split} & H_{j,{{({N_j} + 1)} / 2}}^{n + 1} + \frac{{{a_j}}}{g}V_{j,{{({N_j} + 1}) / 2}}^{n + 1} = H_{j,{N_j}}^n + \frac{{{a_j}}}{g}V_{j,{N_j}}^n \\ & H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} - \frac{{{a_{j + 1}}}}{g}V_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 1,1}^n - \frac{{{a_{j + 1}}}}{g}V_{j + 1,1}^n \\ & H_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} - \frac{{{a_{j + 2}}}}{g}V_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 2,1}^n - \frac{{{a_{j + 2}}}}{g}V_{j + 2,1}^n \end{split}\right\} \tag{A1}$$ 假设交界处两侧的管道尺寸相同(Aj = Aj+1 = Aj+2), 在忽略局部损耗的情况下, 在该分支交界处建立的连续方程和动量方程为
$$\left.\begin{split} & H_{j,{{({N_j} + 1)} \mathord{\left/ {\vphantom {{({N_j} + 1)} 2}} \right. } 2}}^{n + 1} = H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \\ & V_{j,{{({N_j} + 1)} \mathord{\left/ {\vphantom {{({N_j} + 1)} 2}} \right. } 2}}^{n + 1} = V_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} + V_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \end{split}\right\} \tag{A2}$$ 将式(A1)应用于式(A2), 可得到支管处的压力
$$\begin{split} & H_{j,{{({N_j} + 1)} \mathord{\left/ {\vphantom {{({N_j} + 1)} 2}} \right. } 2}}^{n + 1} = H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ &\qquad \left({{\frac{{H_{j,{N_j}}^n}}{{{a_j}}} + \frac{{H_{j + 1,1}^n}}{{{a_{j + 1}}}} + \frac{{H_{j + 2,1}^n}}{{{a_{j + 2}}}} + \frac{{V_{j,{N_j}}^n}}{g} - \frac{{V_{j + 1,1}^n}}{g} - \frac{{V_{j + 2,1}^n}}{g}}}\right)\Biggr/\\ &\qquad \left({{\frac{1}{{{a_j}}} + \frac{1}{{{a_{j + 1}}}} + \frac{1}{{{a_{j + 2}}}}}} \right)\end{split}\tag{A3}$$ 对于MOC边界, 分支结点的特征可写成
$$ \left.\begin{split} & H_{j,({{{N_j} + 1)} \mathord{\left/ {\vphantom {{{N_j} + 1)} 2}} \right. } 2}}^{n + 1} = {C_{j,A}} - {B_{j,A}}Q_{j,({{{N_j} + 1)} \mathord{\left/ {\vphantom {{{N_j} + 1)} 2}} \right. } 2}}^{n + 1} \\ & H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = {C_{j + 1,B}} + {B_{j + 1,B}}Q_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \\ & H_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = {C_{j + 2,B}} + {B_{j + 2,B}}Q_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} \end{split}\right\}\tag{A4} $$ 将式(A4)代入式(A2)即可得出
$$ \begin{split} & H_{j,({N_j} + {1) \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 1,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = H_{j + 2,{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}^{n + 1} = \\ & \qquad \left({{\frac{{{C_{j,A}}}}{{{B_{j,A}}}} + \frac{{{C_{j + 1,B}}}}{{{B_{j + 1,B}}}} + \frac{{{C_{j + 2,B}}}}{{{B_{j + 2,B}}}}}}\right)\Biggr/\left({{\frac{1}{{{B_{j,A}}}} + \frac{1}{{{B_{j + 1,B}}}} + \frac{1}{{{B_{j + 2,B}}}}}}\right) \end{split} \tag{A5}$$ 当忽略MOC中的附加摩阻项时, 式(A5)与式(A3)相同.
-
表 1 实验工况基本参数
Table 1 Basic parameters of experimental working conditions
Case
No.Pipe
length
L/mPipe
diameter
D/mSteady friction
coefficient
fWave
speed
a/(m·s−1)Steady state
flow rate
V/(m·s−1)1 241.52 0.05 0.014 1328 0.280 2 241.52 0.05 0.014 1328 0.354 表 2 管道系统的几何和物理参数
Table 2 Geometrical and physical parameters for pipe system
Pipe No. Pipe length
Lj/mPipe diameter
Dj/mWave speed
aj/(m·s−1)Steady friction
coefficient fj1 100 0.1 1000 0.03 2 100 0.1 910 0.03 3 100 0.1 1000 0.03 表 3 串联管道系统中几种离散方案的波速、库朗数和网格数
Table 3 Wave speed, Courant number, and reach number for several discretization schemes in the series pipes system
Case
No.Schemes Wave speed
a1/(m·s−1)Wave speed
a2/(m·s−1)Courant number
Cr1Courant number
Cr2Reach number
N1Reach number
N21 exact 1000 1260 1 1 63 50 space-line interpolation 1000 1260 1 0.945 20 15 coupled scheme 1000 1260 1 0.945 20 15 2 exact 1000 970 1 1 97 100 wave-speed adjustment 1000 952 1 1 20 21 coupled scheme 1000 970 1 0.97 20 20 -
[1] 韩凯, 丁法龙, 茅泽育. 长距离有压输水工程泵站水锤的数值分析. 水利水电科技进展, 2020, 40(2): 69-75 (Han Kai, Ding Falong, Mao Zeyu. Numerical analysis of water hammer in pumping station of long-distance pressurized water transmission project. Progress of Water Conservancy and Hydropower Science and Technology, 2020, 40(2): 69-75 (in Chinses) Han Kai, Ding Falong, Mao Zeyu. Numerical analysis of water hammer in pumping station of long-distance pressurized water transmission project. Progress of Water Conservancy and Hydropower Science and Technology, 2020, 40(2): 69-75 (in Chinses)
[2] 周大庆, 张蓝国. 抽水蓄能电站泵工况断电过渡过程数值试验. 华中科技大学学报, 2014, 42(2): 16-20 (Zhou Daqing, Zhang Languo. Numerical test of pumping storage power station pumping condition power failure transition process. Journal of Huazhong University of Science and Technology, 2014, 42(2): 16-20 (in Chinses) Zhou Daqing, Zhang Languo. Numerical test of pumping storage power station pumping condition power failure transition process. Journal of Huazhong University of Science and Technology, 2014, 42(2): 16-20 (in Chinses)
[3] 曹云, 周领, 方浩宇等. 输水管道水锤与流固耦合5阶有限体积法模型. 力学学报, 2023, 55(8): 1637-1648 (Cao Yun, Zhou Ling, Fang Haoyu, et al. A 5th order finite volume method model of water hammer and fluid-structure coupling in water pipelines. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1637-1648 (in Chinses) Cao Yun, Zhou Ling, Fang Haoyu, et al. A 5th order finite volume method model of water hammer and fluid-structure coupling in water pipelines. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1637-1648 (in Chinses)
[4] 富友, 蒋劲, 李燕辉等. 双流体水锤计算模型中弛豫系数计算方法. 华中科技大学学报, 2018, 46(10): 51-56 (Fu You, Jiang Jin, Li Yanhui, et al. Calculation method of relaxation coefficient in two-fluid water hammer calculation model. Journal of Huazhong University of Science and Technology, 2018, 46(10): 51-56 (in Chinses) Fu You, Jiang Jin, Li Yanhui, et al. Calculation method of relaxation coefficient in two-fluid water hammer calculation model. Journal of Huazhong University of Science and Technology, 2018, 46(10): 51-56 (in Chinses)
[5] 袁哲, 王丰, 周子旋等. 长距离跨海管道供水工程的水锤防护研究. 水电能源科学, 2022, 40(6): 114-117, 27 (Yuan Zhe, Wang Feng, Zhou Zixuan, et al. Research on water hammer protection of long-distance cross-sea pipeline water supply project. Hydropower Energy Science, 2022, 40(6): 114-117, 27 (in Chinses) Yuan Zhe, Wang Feng, Zhou Zixuan, et al. Research on water hammer protection of long-distance cross-sea pipeline water supply project. Hydropower Energy Science, 2022, 40(6): 114-117, 27 (in Chinses)
[6] 唐均, 张洪明, 王文全. 长距离有压输水管道系统水锤分析. 水电能源科学, 2010, 28(2): 82-84 (Tang Jun, Zhang Hongming, Wang Wenquan. Analysis of water hammer in long pressure pipe water supply system. Water Resources and Power, 2010, 28(2): 82-84 (in Chinses) Tang Jun, Zhang Hongming, Wang Wenquan. Analysis of water hammer in long pressure pipe water supply system. Water Resources and Power, 2010, 28(2): 82-84 (in Chinses)
[7] 赵修龙, 张健, 俞晓东. 基于有限体积法的有压管道水锤计算. 水电能源科学, 2014, 32(2): 164-166, 182 (Zhao Xiulong, Zhang Jian, Yu Xiaodong. A finite volume method for water hammer calculation in pressure pipes. Water Resources and Power, 2014, 32(2): 164-166, 182 (in Chinses) Zhao Xiulong, Zhang Jian, Yu Xiaodong. A finite volume method for water hammer calculation in pressure pipes. Water Resources and Power, 2014, 32(2): 164-166, 182 (in Chinses)
[8] 周领, 易昌宇, 车同川. 输水管道水锤能量衰减效应及参数影响研究. 华中科技大学学报, 2024, 出版中 (Zhou Ling, Yi Changyu, Che Tongchuan. Study on water hammer energy attenuation effect and parameter influence in water pipeline. Journal of Huazhong University of Science and Technology, 2024, in press (in Chinses) Zhou Ling, Yi Changyu, Che Tongchuan. Study on water hammer energy attenuation effect and parameter influence in water pipeline. Journal of Huazhong University of Science and Technology, 2024, in press (in Chinses)
[9] Wylie EB, Streeter VL, Suo L. Fluid Transients in Systems. Englewood Cliffs, NJ: Prentice Hall, 1993: 184-192
[10] Chaudhry MH. Applied Hydraulic Transients. New York: Springer, 2014
[11] Duan HF, Pan B, Wang M, et al. State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology—AQUA, 2020, 69(8): 858-893 doi: 10.2166/aqua.2020.048
[12] Ghidaoui MS, Karney BW, McInnis DA. Energy estimates for discretization errors in water hammer problems. Journal of Hydraulic Engineering, 1998, 124(4): 384-393 doi: 10.1061/(ASCE)0733-9429(1998)124:4(384)
[13] Zhao M, Ghidaoui MS. Godunov-type solutions for water hammer flows. Journal of Hydraulic Engineering, 2004, 130(4): 341-348 doi: 10.1061/(ASCE)0733-9429(2004)130:4(341)
[14] Ghidaoui MS. On the fundamental equations of water hammer. Urban Water Journal, 2004, 1(2): 71-83 doi: 10.1080/15730620412331290001
[15] Zhou L, Wang H, Liu D, et al. A second-order finite volume method for pipe flow with water column separation. Journal of Hydro-environment Research, 2017, 17: 47-55 doi: 10.1016/j.jher.2016.11.004
[16] Zhou L, Wang H, Bergant A, et al. Godunov-type solutions with discrete gas cavity model for transient cavitating pipe flow. Journal of Hydraulic Engineering, 2018, 144(5): 04018017 doi: 10.1061/(ASCE)HY.1943-7900.0001463
[17] Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin: Verlag Berlin Heidelberg, 2009: 115-125
[18] Pal S, Hanmaiahgari PR, Karney BW. An overview of the numerical approaches to water hammer modelling: The ongoing quest for practical and accurate numerical approaches. Water, 2021, 13(11): 1597 doi: 10.3390/w13111597
[19] 周领, 王宁, 赵越等. 考虑动态摩阻的水柱分离弥合水锤Godunov模型. 哈尔滨工业大学学报, 2023, 55(4): 138-144 (Zhou Ling, Wang Ning, Zhao Yue, et al. Godunov model of water hammer for water column separation and bridging considering dynamic drag. Journal of Harbin Institute of Technology, 2023, 55(4): 138-144 (in Chinses) Zhou Ling, Wang Ning, Zhao Yue, et al. Godunov model of water hammer for water column separation and bridging considering dynamic drag. Journal of Harbin Institute of Technology, 2023, 55(4): 138-144 (in Chinses)
[20] 刘静, 周领, 曹波等. 瞬变流中加权类动态摩阻模型的二阶近似求解. 水力发电学报, 2020, 39(4): 55-61 (Liu jing, Zhou Ling, Cao Bo, et al. Second-order approximate solution of the weight-function unsteady friction model of transient flow. Journal of Hydroelectric Engineering, 2020, 39(4): 55-61 (in Chinses) Liu jing, Zhou Ling, Cao Bo, et al. Second-order approximate solution of the weight-function unsteady friction model of transient flow. Journal of Hydroelectric Engineering, 2020, 39(4): 55-61 (in Chinses)
[21] Brunone B, Karney BW, Mecarelli M, et al. Velocity profiles and unsteady pipe friction in transient flow. Journal of Water Resources Planning and Management, 2000, 126(4): 236-244 doi: 10.1061/(ASCE)0733-9496(2000)126:4(236)
[22] Zielke W. Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 1968, 90(1): 109-115 doi: 10.1115/1.3605049
[23] Vardy A, Brown J. Efficient approximation of unsteady friction weighting functions. Journal of Hydraulic Engineering, 2004, 130(11): 1097-1107 doi: 10.1061/(ASCE)0733-9429(2004)130:11(1097)
[24] Vardy AE, Brown JM. Approximation of turbulent wall shear stresses in highly transient pipe flows. Journal of Hydraulic Engineering, 2007, 133(11): 1219-1228 doi: 10.1061/(ASCE)0733-9429(2007)133:11(1219)
[25] Zhou L, Li Y, Karney B, et al. Godunov-type solutions for transient pipe flow implicitly incorporating Brunone unsteady friction. Journal of Hydraulic Engineering, 2021, 147(7): 04021021 doi: 10.1061/(ASCE)HY.1943-7900.0001895
[26] Zhou L, Li Y, Zhao Y, et al. An accurate and efficient scheme involving unsteady friction for transient pipe flow. Journal of Hydroinformatics, 2021, 23(4): 879-896 doi: 10.2166/hydro.2021.160
[27] Godunov SK, Bohachevsky I. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij Sbornik, 1959, 47(3): 271-306
[28] Guinot V. Riemann solvers for water hammer simulations by Godunov method. International Journal for Numerical Methods in Engineering, 2000, 49(7): 851-870 doi: 10.1002/1097-0207(20001110)49:7<851::AID-NME978>3.0.CO;2-#
[29] Seck A, Fuamba M, Kahawita R. Finite-volume solutions to the water-hammer equations in conservation form incorporating dynamic friction using the Godunov scheme. Journal of Hydraulic Engineering, 2017, 143(9): 04017029 doi: 10.1061/(ASCE)HY.1943-7900.0001333
[30] Pal S, Hanmaiahgari PR, Lambert MF. Efficient approach toward the application of the Godunov method to hydraulic transients. Journal of Hydroinformatics, 2020, 22(5): 1370-1390 doi: 10.2166/hydro.2020.037
-
期刊类型引用(3)
1. 张稚萱,马骏,张煌,董怡豪,徐诗杰,刘琳,张博然. 输水管道压力调控设备边界条件数值方法综述. 水利规划与设计. 2025(04): 131-149 . 百度学术
2. 周领,田永薪,王栋仪,胡垠盈,李赟杰,蔡彬豪. 考虑不确定性因素的弹性管道水锤模型及实验验证. 力学学报. 2024(11): 3178-3187 . 本站查看
3. 梅力方,李小纲,杨思琪,马轶,乔潘诗霈. 基于改进三阶WENO格式的管道水锤波数值模拟. 中国造船. 2024(06): 182-194 . 百度学术
其他类型引用(0)