EI、Scopus 收录
中文核心期刊

柱体流激振动能量俘获理论与技术研究若干进展

徐万海, 马烨璇

徐万海, 马烨璇. 柱体流激振动能量俘获理论与技术研究若干进展. 力学学报, 2024, 56(3): 524-539. DOI: 10.6052/0459-1879-23-558
引用本文: 徐万海, 马烨璇. 柱体流激振动能量俘获理论与技术研究若干进展. 力学学报, 2024, 56(3): 524-539. DOI: 10.6052/0459-1879-23-558
Xu Wanhai, Ma Yexuan. Some advances in energy harvesting theory and technology based on flow-induced vibration of cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 524-539. DOI: 10.6052/0459-1879-23-558
Citation: Xu Wanhai, Ma Yexuan. Some advances in energy harvesting theory and technology based on flow-induced vibration of cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 524-539. DOI: 10.6052/0459-1879-23-558
徐万海, 马烨璇. 柱体流激振动能量俘获理论与技术研究若干进展. 力学学报, 2024, 56(3): 524-539. CSTR: 32045.14.0459-1879-23-558
引用本文: 徐万海, 马烨璇. 柱体流激振动能量俘获理论与技术研究若干进展. 力学学报, 2024, 56(3): 524-539. CSTR: 32045.14.0459-1879-23-558
Xu Wanhai, Ma Yexuan. Some advances in energy harvesting theory and technology based on flow-induced vibration of cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 524-539. CSTR: 32045.14.0459-1879-23-558
Citation: Xu Wanhai, Ma Yexuan. Some advances in energy harvesting theory and technology based on flow-induced vibration of cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 524-539. CSTR: 32045.14.0459-1879-23-558

柱体流激振动能量俘获理论与技术研究若干进展

基金项目: 国家自然科学基金资助项目(U2106223, 51979193和52301352)
详细信息
    通讯作者:

    徐万海, 教授, 主要研究方向为流激振动及振动控制. E-mail: xuwanhai@tju.edu.cn

    马烨璇, 助理研究员, 主要研究方向为流激振动及振动控制. E-mail: mayexuan@imech.ac.cn

  • 中图分类号: TV312

SOME ADVANCES IN ENERGY HARVESTING THEORY AND TECHNOLOGY BASED ON FLOW-INDUCED VIBRATION OF CYLINDRICAL STRUCTURES

  • 摘要: 潮流能分布广泛, 且储量巨大, 具备巨大的规模化开发利用价值. 流激振动是一种常见的流固耦合现象, 通过柱体流激振动能够在流速较低时实现有效的能量转换, 基于柱体流激振动的能量俘获技术在未来具备广阔的工程应用前景. 近年来, 针对柱体结构流激振动特性和能量俘获性能, 出现了大量的实验和数值仿真研究工作. 文章全面阐述了多种截面形式的单个柱体、柱群结构流激振动能量俘获理论与技术方面的研究进展: 对于单个圆柱流激振动能量俘获, 目前已基本揭示了被动湍流控制器参数、系统阻尼、雷诺数和边界条件等因素对能量俘获性能的影响规律, 基本完成了理论和技术积累; 对于非圆截面柱体流激振动能量俘获, 已初步明确特定来流攻角、系统质量比、系统阻尼、系统刚度和雷诺数条件下三角形、四边形、多边形与异形等多种截面形式柱体的流激振动作用机理和能量俘获能力; 对于柱群的流激振动能量俘获, 各柱体振子之间存在流场干涉, 需要合理设计柱体排布形式、柱体间距和系统阻尼等参数, 实现流体能量俘获最大化. 通过综述国内外流激振动能量俘获理论和技术方面的研究进展, 对今后该问题的研究进行了力所能及的展望, 期望促进流激振动能量俘获理论的发展和流激振动能量转换装置的工程应用.
    Abstract: Tidal energy, characterized by its widespread distribution and immense reserves, stands as a promising renewable energy source suitable for large-scale development and utilization. Flow-induced vibration, a common fluid-structure interaction phenomenon, facilitates efficient energy conversion at lower flow velocities through the vibration of cylindrical structures. Energy harvesting technologies based on flow-induced vibration of cylindrical structures exhibit significant potential for wide-ranging engineering applications in the future. In recent years, numerous experimental and numerical simulation studies have been conducted to explore the flow-induced vibration characteristics and energy harvesting performance of cylinder structures. This paper comprehensively presents the research progress in the theoretical and technical aspects of flow-induced vibration energy harvesting for various cross-sectional forms of single cylinder and cylinder arrays. For the case of flow-induced vibration energy harvesting from a single cylinder, substantial progress has been made in elucidating the influence patterns of passive turbulence controllers, system damping, Reynolds number and boundary conditions on energy harvesting performance. Theoretical foundations and technological advancements have been preliminarily established. Concerning the energy harvesting from a non-circular cross-sectional cylinder, the paper outlines the preliminary understanding of the flow-induced vibration mechanisms and energy harvesting capabilities of triangular, quadrilateral, polygonal and irregularly shaped cylinder under specific conditions such as incoming flow angle, system mass ratio, system damping, system stiffness, and Reynolds number. In the context of flow-induced vibration energy harvesting from cylinder arrays, the interference of flow fields between cylinder oscillators necessitates a rational design of parameters such as cylinder arrangement, cylinder spacing and system damping to achieve maximized fluidic energy capture. By reviewing the domestic and international research progress in flow-induced vibration energy harvesting theories and technologies, this paper provides a prospective outlook for future studies, aiming to stimulate the development of flow-induced vibration energy harvesting theories and advance the engineering applications of flow-induced vibration energy conversion devices.
  • 大力发展可再生能源是推动能源降碳减排、实现“双碳”目标的必由之路. 潮流能因其分布广泛且储量巨大, 是备受关注的可再生能源之一. 相较于波浪能、风能等海洋绿色能源, 潮流能相对稳定且可提前预报. 全世界范围内潮流能的理论估计值为0.5 ~ 1.0 TW量级[1-2]. 我国拥有18000 km的海岸线, 可利用的水道超过130个, 拥有丰富的潮流能储量, 理论可开采量约1.4 × 107 kW[3], 具备规模化开发利用潮流能的条件.

    目前, 潮流能转化装置按照能量俘获原理可分为涡轮型和非涡轮型. 涡轮型潮流能获取装置主要通过流动介质推动水轮机桨叶转动, 将流体动能转化为获能装置的机械能, 再通过电力变化装置转换成电能. 涡轮型潮流能获取装置包括: 水平轴水轮机和垂直轴水轮机, 其中水平轴水轮机分为风车式、空心贯穿式和导流罩式等, 垂直轴水轮机分为直叶片式和螺旋叶片式等. 非涡轮型潮流能获取装置采用新型原理进行能量转换, 主要包括: 升力-阻力式、振荡水翼式、摆动翼式、压电式、帆式和文丘里式等. 相较于非涡轮型潮流能获取装置, 涡轮型潮流能获取装置因其设备的经济性与灵活性, 在潮流能发电工程当中得到了广泛的应用[4]. 与世界上潮流能资源最好的英国、挪威等国家相比, 我国沿海的潮流总体流速偏低、水深较浅且潮流能分布很不均匀. 在东海主要以浙江省沿海潮流能资源最为丰富并且开发条件最好. 而在北方沿海地区, 有相当多潮流流速较低约在1.0 m/s左右的海域. 由于潮流能的能量密度与流速的立方成正比, 因此在潮流流速较低的海域利用水轮机开发潮流能势必需要增大潮流能发电装置的尺寸, 对水深也提出了更高要求[5]. 同时, 由于水轮机需要一定的启动流速, 在流速较低时很难实现有效的能量转换. 这样不仅造成了潮流能资源的浪费, 也阻碍了潮流能利用技术在更大范围内推广. 近年来, 随着海洋工程技术迅猛发展, 研究人员发现可以利用结构物的流激振动进行潮流能发电. 当流体流过结构物时, 会对结构物表面施加周期性变化的流体力, 使其发生往复运动, 而结构物的往复运动又会改变流体的流动模式, 进而改变作用于结构物表面的流体力, 这种流固耦合现象称为流激振动(flow-induced vibration, FIV)[6-10]. 流激振动是造成海洋工程结构物疲劳损伤的主要原因之一. 从另外方面去看, 流激振动具有自激且自持的特性, 非常适合用于潮流能的开发利用[11-13].

    流激振动能量俘获装置的研制始于20世纪90年代, 按照能量转化方式可分为压电式[14-16]和电磁式两种类型[17-19]. 压电式流激振动发电装置是利用流体流过压电材料时使其发生变形而产生的电压变化实现能量转换. 比较经典的压电式流激振动发电装置包括悬臂梁式[20]、鳗鱼式[21-22]和树式[23-25]等. 悬臂梁式能量俘获装置利用压电梁材料流激振动作用发电, 可应用于微型、小型传感器等电子设备的供电系统, 但整体电能输出量低, 仅在μW或mW量级. 鳗鱼式能量俘获装置利用柔性压电材料的摆动或扭转发电, 最初被应用于潮流能利用[21-22, 26], 经改进后进一步应用于风能利用. 树式能量俘获装置利用了流体旋涡脱落与结构的共振作用, 能量转化能力相对较强, 该类装置形式多样, 改进型装置层出不穷[23-24, 27]. 整体而言, 压电式能量俘获装置的能量转换能力较弱, 现阶段难以实现大规模开发.

    电磁式能量俘获装置通过振子流激振动带动永磁体切割磁场, 从而实现发电. Wang等[17]设计了一种电磁式能量俘获装置, 利用旋涡脱落使顶梁结构形变, 从而推动永磁体切割磁感线进行发电, 不过该装置的能量俘获功率较低, 仅为μW量级. Vortex Bladeless公司借鉴了树式能量俘获装置的理念, 设计了电磁式流激振动能量俘获装置. 该装置内部不存在齿轮、螺栓或其他机械的运动部件, 成本极大降低、发电效率显著提升, 但仅停留在样机研究阶段, 能量转换能力是否能达到原型机的效果仍有待进一步验证[13]. 2005年, 美国密歇根大学的Bernitsas教授团队研制了VIVACE (vortex- induced vibration aquatic clean energy)装置(如图1所示), 通过柱体流激振动将流体能量转换为机械能, 再利用发电机将机械能转换为电能[18-19]. 该装置中柱体振子受到的流体力远大于压电式装置振子受到的流体力, 对阻尼的克服强度远高于压电式装置, 能量转换能力显著增强, 也有利于大规模开发, 成为电磁式流激振动能量俘获研究的突破点和里程碑.

    图  1  流激振动能量俘获装置示意图[18]
    Figure  1.  Schematic of energy harvesting device based on FIV[18]

    相较于波浪能俘获装置和其他潮流能俘获装置, VIVACE这种基于柱体结构流激振动的能量俘获装置具有较高的能量密度[5](如图2所示), 极具工程应用前景. 众多学者针对单个柱体结构、柱群结构的流激振动能量俘获理论和技术开展了大量研究, 重点围绕雷诺数条件、结构截面形状、系统阻尼特性和多柱体排布方式等多种影响因素, 探讨了流激振动能量转换效率. 本文将对国内外流激振动能量俘获理论和技术方面的研究进展进行全方位综述, 重点对现有流激振动能量转化装置的响应机理、能量俘获功率和能量转换效率的影响因素进行总结阐述, 并对未来的研究工作进行展望, 以期促进流激振动能量俘获理论的发展和流激振动能量转换装置的工程应用.

    图  2  VIVACE与波浪能及潮流能发电装置的能量密度[18]
    Figure  2.  The energy density of VIVACE, wave and other tidal energy harvesting devices[18]

    流激振动能量俘获评估理论模型可用于计算流激振动能量俘获功率和转换效率, 目前流激振动能量俘获理论模型的推导多以Bernitsas等[18]提出的数学模型为参考.

    假设来流沿x方向, 柱体振子在y方向振动. 那么柱体振子的动力学响应可以由如下二阶线性微分方程表示

    $$ {m_{{\mathrm{osc}}}}\ddot y + {c_{{\mathrm{total}}}}\dot y + Ky = {F_{{\mathrm{Fluid}}}} $$ (1)

    其中mosc为振荡系统的质量, ctotal为总体阻尼系数, K为系统刚度系数, y为柱体振子的振动位移, 符号( ∙ )表示对时间t求导. FFluid为柱体在振动方向上受到的流体力, 可分解为两部分, 即黏性力部分Fviscous和非黏性力部分Finciscid

    $$ {F_{{\mathrm{Fluid}}}} = {F_{{\mathrm{viscous}}}} + {F_{{\mathrm{inciscid}}}} $$ (2)

    黏性力Fviscous和非黏性力Finciscid可分别由式(3)和式(4)表示

    $$\qquad\qquad {F_{{\mathrm{viscous}}}} = \frac{1}{2}{c_y}\left( t \right)\rho {U^2}DL $$ (3)
    $$\qquad\qquad {F_{{\mathrm{inciscid}}}} = - {m_a}\ddot y $$ (4)

    其中cy(t)为柱体振子振动方向的流体力系数, ρ为流体密度, U为来流速度, D为柱体截面的特征尺寸, L为柱体振子的长度, ma为柱体振子在流体中的附加质量. 将式(2) ~ 式(4)代入式(1), 进一步化简可得

    $$ \left( {{m_{{\mathrm{osc}}}} + {m_a}} \right)\ddot y + {c_{{\mathrm{total}}}}\dot y + Ky = \frac{1}{2}{c_y}\left( t \right)\rho {U^2}DL $$ (5)

    在一个振动周期Tosc内, 流体对柱体振子系统所做的功, 即柱体振子可转化的机械能功率可表示为

    $$ \begin{split} & {P_{{\mathrm{mech}}}} = \frac{1}{{{{{T}}_{{\mathrm{osc}}}}}}\int_0^{{{{T}}_{{\mathrm{osc}}}}} {{F_{{\mathrm{viscous}}}}\dot y{\text{d}}t}= \\ &\qquad \frac{1}{{{{{T}}_{{\mathrm{osc}}}}}}\int_0^{{{{T}}_{{\mathrm{osc}}}}} {\left[ {\frac{1}{2}{c_y}\left( t \right)\rho {U^2}DL} \right]\dot y{\text{d}}t}= \\ &\qquad \frac{1}{{{{{T}}_{{\mathrm{osc}}}}}}\int_0^{{{{T}}_{{\mathrm{osc}}}}} {\left[ {\left( {{m_{{\mathrm{osc}}}} + {m_a}} \right)\ddot y + {c_{{\mathrm{total}}}}\dot y + Ky} \right]\dot y{\text{d}}t}\end{split} $$ (6)

    若柱体流激振动过程中可近似简化为简谐振动, 式(6)中最后一项中唯一非0项为$ c_{\text {total }} \dot{y}^{2} $. 流激振动能量的转化过程为: 先由流体动能转换为柱体系统机械能, 再由系统机械能转化为电能. 机械能向电能转化的过程中可引入获能阻尼系数charness, 获能阻尼和系统损耗阻尼共同构成总体阻尼

    $$ {c_{{\mathrm{total}}}} = {c_{{\mathrm{harness}}}} + {c_{{\mathrm{system}}}} $$ (7)

    其中csystem为系统损耗阻尼系数. 柱体流激振动俘获的能量输出功率可表示为

    $$ {P_{{\mathrm{harness}}}} = \frac{1}{{{{{T}}_{{\mathrm{osc}}}}}}\int_0^{{{{T}}_{{\mathrm{osc}}}}} {{c_{{\mathrm{harness}}}}{{\dot y}^2}{\text{d}}t} $$ (8)

    能量耗散功率可表示为

    $$ {P_{{\mathrm{dissipated}}}} = \frac{1}{{{{{T}}_{{\mathrm{osc}}}}}}\int_0^{{{{T}}_{{\mathrm{osc}}}}} {{c_{{\mathrm{system}}}}{{\dot y}^2}{\text{d}}t} $$ (9)

    柱体振子扫过区域内流体所蕴含的能量可表述为

    $$ {P_{{\mathrm{Fluid}}}} = \frac{1}{2}\rho {U^3}\left( {2{A_{\max }} + D} \right)L $$ (10)

    式中Amax为柱体振子振动过程中的最大振幅. 柱体流激振动的能量转换效率可表示为

    $$ {\eta _{{\mathrm{harness}}}}\left( \text{%} \right) = \frac{{{P_{{\mathrm{harness}}}}}}{{{P_{{\mathrm{Fluid}}}} \times BetzLimit}} \times 100\text{%} $$ (11)

    式中BetzLimit为贝茨极限, 是理想状态下流体动能转换成机械能的极限比值, 其值为16/27 (约为59.26%)[28]. 可基于式(11)计算柱体流激振动能量转换效率的理论值, 对流激振动能量俘获装置的效果进行评估.

    根据流激振动能量俘获评估理论模型可知, 单个柱体流激振动能量转换效率主要与振幅和频率相关, 而柱体的振幅和频率受到雷诺数、质量比、阻尼比和截面形状等多种因素影响. 学者们重点关注了圆柱和非圆截面柱体在不同雷诺数、质量比、阻尼比等条件下的振动响应特性和能量俘获性能.

    早期VIVACE能量俘获装置的柱体振子设计为单个光滑圆柱结构, 基于单个圆柱结构流激振动响应机理推导了能量转换效率理论模型, 并通过模型实验初步证明了VIVACE能量俘获装置具有较高的能量转换效率. 随后, Bernitsas等[18-19]研究了雷诺数、阻尼比和边界条件等多种因素对单根圆柱流激振动能量转换效率的影响.

    光滑圆柱的流激振动几乎发生在整个雷诺数范围内, 仅在3个雷诺数范围内不发生振动, 即Re < 40 (边界层不分离和形成一对稳定旋涡的区域), 150 < Re < 400 (卡门涡内由层流向湍流转化的过渡区域), 3.0 × 105 < Re < 5.0 × 105(层流向湍流的过渡区域)[29-30]. 在这3个雷诺数范围内光滑圆柱的尾流中未出现周期性的旋涡脱落, 因此难以俘获流体能量. 通常可以通过改变圆柱外径、外表面粗糙度、安装被动和主动湍流控制器等方式调整雷诺数范围, 确保VIVACE柱体振子在整个雷诺数范围内都能保持振动状态. 为了能够提高能量转换效率, 柱体振子要在较高的阻尼系数条件下发生振动. 早期关于单个圆柱流激振动的研究中大多关注的是较低雷诺数条件和低阻尼比条件. 因此, Bernitsas教授团队实验观测了高雷诺数和高阻尼系数条件下单个圆柱的流激振动响应特性[31-32]. 在雷诺数Re = 1000 ~ 200000范围内, 雷诺数对振幅的影响比质量阻尼参数的影响更大. 随着雷诺数升高, 圆柱流激振动的上分支共振范围增大, 同时无量纲振幅增长, 即使在高阻尼系数条件下无量纲振幅也能达到1.9. 这些规律为VIVACE系统的设计提供了重要理论依据.

    考虑到VIVACE能量俘获装置的实际应用场景, 自由液面和水底边壁可能会对柱体振子流激振动响应和能量俘获功率产生影响. VIVACE装置在浅水区域(河流或溪流)中作业时, 会受到自由表面的不利影响. 柱体靠近自由液面时, 流激振动的共振范围减小、频率锁定特性产生显著改变[33]. 主要原因在于: 圆柱振动对自由液面产生强烈调制作用, 改变了柱体顶部的涡量和涡脱落周期, 进而导致在涡脱落频率、振动频率和固有频率之间的锁频带宽减小, 流激振动难以维持大范围的共振. 在自由液面的影响下柱体振幅降低, 且在振动启动阶段并未像远离自由液面那样跳跃增长, 而是随流速增大缓慢增长. 由于圆柱尾流的模式切换, 柱体流激振动共振开始和结束阶段均存在滞回现象[31]. VIVACE装置靠近水底边壁时, 边壁效应会对柱体振子的响应特性产生影响. 在雷诺数Re = 8000 ~ 150000范围内, 边壁效应的影响随间距比发生变化. 间距比小于0.65时, 流激振动响应的共振范围向高流速区域转移, 并在共振结束阶段出现滞回现象, 无量纲正向振幅因圆柱后仅出现顶部尾涡可增大至2.0. 间距比在0.65 ~ 3.0之间时, 流激振动响应的共振范围未发生显著变化, 正向振幅和负向振幅整体对称, 但振幅因尾涡强度的减弱而减小. 间距比大于3.0后, 边壁效应的影响可忽略[31].

    圆柱表面粗糙度通过影响边界层分离点、湍流水平、尾涡强度, 进而对流激振动响应和流固耦合作用产生重要影响[34-36]. 为了进一步提高能量转换效率, 可将由直条粗糙带构成的被动湍流控制器(passive turbulence control, PTC)安装于VIVACE系统中圆柱振子的外表面(如图3所示). PTC对VIVACE装置产生3种有利作用: 一是通过局部增大圆柱的表面粗糙度, 使边界层由层流转变为湍流; 二是有助于控制旋涡的脱落, 使圆柱展向不同位置的流动参数同步, 增大尾流的展向相关长度; 三是将流动的分离点固定, 促使圆柱发生驰振[37-39]. 整体而言, PTC触发了流动分离并给边界层充能, 从而显著提升尾流强度, 产生更高水平的升力. 安装PTC后的圆柱能够在光滑圆柱不发生振动的临界雷诺数范围内产生大幅振动. PTC的最佳安装角度范围为57° ~ 80°, 在这一范围内圆柱流激振动的幅值显著增大, 最高无量纲振幅可达2.7. PTC使旋涡脱落的轴向相关性增强, 能够增大流激振动共振范围, 并提前进入共振阶段[40]. 这些影响能够最大限度地将流体能量转化为机械能, 从而增强装置的能量俘获功率, 见图4. 徐万海等[41-42]进一步关注了自由液面对安装PTC后圆柱流激振动的影响. 近自由液面PTC圆柱随流速增大可观测到3个区域, 即涡激区、涡激向驰振转化区和驰振区. 在涡激区, 自由液面的影响不明显; 在驰振区, 自由液面效应使振动幅值和流体力系数出现显著差异.

    图  3  安装PTC的圆柱模型[35-36]
    Figure  3.  Cylinder model with PTC[35-36]
    图  4  近自由液面PTC圆柱的能量俘获功率[42]
    Figure  4.  Harnessed power of a single cylinder with PTC near the free surface[42]

    为了增强VIVACE装置的性能, Lee等[43-44]开发了第一代虚拟阻尼-弹簧系统 (virtual damper–spring system, VCK)替代VIVACE装置中的实体弹簧. VCK系统由圆柱振子、同步齿带和滑轮传动、电动机/发电机和控制器组成. 控制器通过测量的速度和位移反馈向系统提供阻尼力和回复力. 因此, 在此过程中不会使力与位移之间产生人为的相位差, 导致能量转换的偏移. 第一代VCK系统采用数据采集系统读取圆柱的位置并完成力反馈, 成功提升了VIVACE装置的运行效率. 但这套数据采集系统中的ADC (analog digital conversion)模块和DAC (digital analog conversion)模块需要进行数字信号滤波, 导致力反馈和位移之间出现相位差, 造成一定的迟滞效应. Sun等[45]在第一代VCK系统基础上研制了第二代VCK系统. 第二代VCK系统采用数字信号, 使得系统响应速度更快, 整个系统只在中央处理器运行部分存在10 μs的延迟, 实现了对位移和速度的实时测量, 如图5所示.

    图  5  虚拟阻尼-弹簧系统[45]
    Figure  5.  Virtual damper-spring system[45]

    目前, 基于单个圆柱振子的VIVACE装置初步完成了理论和技术积累, 已申请多项专利[46-48], 并多次在美国的圣克莱尔河及荷兰的多条运河中进行了现场样机测试.

    对于不安装PTC湍流控制器的圆柱结构, 通常在来流作用下主要激发涡激振动, 涡激振动具有自限性, 能量俘获有限. 非圆截面柱体结构, 特别是具有尖角截面的柱体, 通常存在涡激振动和驰振两种模式. 驰振为非自限制振动, 随着流速增大振幅逐渐增大, 有利于能量俘获. 因此, 非圆截面柱体结构(如图6所示)流激振动的响应特性和能量俘获亦引起了诸多关注.

    图  6  非圆截面柱体示意图[49-55]
    Figure  6.  Schematic of the cylinder with non-circular cross-section[49-55]

    学术界对正方形截面柱体结构的流激振动关注较早, 并已初步揭示了其驰振特征[56-60]. Tamimi等[49]实验研究了正方形截面柱体的流激振动特性和能量俘获能力. 实验观测的雷诺数范围为Re = 2300 ~ 40000, 来流攻角工况为0°和45°. 攻角为0°时, 正方形截面柱体表现为典型的驰振特征, 振幅随流速持续增长, 升力系数和响应频率随流速保持缓慢变化, 柱体获取的机械能随流速持续增长,

    在实验观测的流速范围内并未出现极值; 攻角为45°时, 柱体表现为典型的涡激振动特征, 振幅随流速先增大后减小, 且同步出现锁频现象和相位角跳变现象, 柱体获取的机械能先增大后减小, 在共振范围内存在极值. 虽然涡激振动时的获能效率高于驰振, 但涡激振动获取的机械能存在极值, 而发生驰振时获取的机械能会随流速增大而持续增长. Han等[61]在更低的质量比条件下(m* = 1.45)开展了正方形截面柱体流激振动的数值仿真分析. 攻角为45°时, 低质量比柱体的涡激作用显著增强, 随着流速增大出现了持续锁频现象; 攻角为22.5°时, 正方形截面柱体振动中存在涡激作用的高频成分和驰振的低频成分, 高流速工况下的大振幅是由涡激作用和驰振共同导致的. 由于持续锁频, 攻角为45°条件下的低质量比柱体具备更高的能量俘获能力, 且在阻尼比小于0.3时能量转换效率对阻尼比变化不敏感, 而阻尼比为0.7时能量转换效率最高. Zhang等[62]通过数值仿真在更高的雷诺数范围内(Re = 15500 ~ 232000)研究了攻角为0°时正方形截面柱体的流激振动响应和能量俘获能力. 随着雷诺数增大, 柱体振动响应依次出现涡激振动初始分支区(Re < 46000)、涡激振动上分支区(46000 < Re < 127000)、涡激振动向驰振过渡区(127000 < Re < 159000)和驰振区(Re > 159000). 涡激振动上分支区能量转换效率出现最大值, 而在驰振区能量转换效率降低, 但能量俘获功率随流速增大持续增长. 柱体质量比和阻尼比的影响显著, 阻尼比小于0.6时, 随着阻尼比的增大, 柱体振幅减小, 但能量俘获功率和转换效率增加; 阻尼比达到0.8时, 驰振响应消失. 增加质量比会缩短涡激振动响应区和涡激振动向驰振过渡区, 柱体在更低的雷诺数条件下发生驰振, 且能量俘获功率和能量转换效率随质量比的增加而降低(如图7所示).

    图  7  不同质量比下方柱的振动幅值[62]
    Figure  7.  Vibration amplitude of a square cylinder with different mass ratio[62]

    对于正方形截面柱体, 涡激振动的能量转换效率高于驰振的能量转换效率, 主要原因是流体所蕴含的能量与流速呈三次方关系, 能量俘获功率在由涡激振动向驰振转变的增长量小于流体蕴含能量的增长幅度. 但由于驰振的不稳定性, 能量俘获功率随流速增大持续增长而没有极限, 表明利用驰振进行流激振动能量俘获的潜力巨大[63]. Zhang等[64]进一步研究了长方形截面柱体流激振动能量俘获能力. 边长比(流动方向边长与垂直来流方向边长之比)对柱体流激振动响应和能量俘获功率存在显著影响. 当边长比从1/6增加到1.5时, 柱体振动逐渐受到抑制, 当边长比为2.0时, 在任何流速下都不会出现涡激振动和驰振. 对于能量收集, 当边长比从2.0减小到1/4时, 能量俘获功率呈增大趋势, 最大能量转换效率可同步提高至15.5%; 当边长比减小到1/6时, 能量俘获功率保持增加趋势, 但最大能量转换效率并未进一步提高.

    三角形截面柱体在外部流场作用下也会产生大振幅驰振[50, 65-66]. 对于正三角形截面柱体, 当来流方向与其某一边长垂直(来流攻角为60°)时, 涡激振动响应和驰振会随流速增大依次激发, 并且在涡激振动向驰振的转化区存在响应频率降低的现象. 随着系统阻尼比增大, 正三角形截面柱体会发生软驰振和硬驰振. 软驰振是指柱体由涡激振动转变而成的驰振, 具有自激性; 硬驰振是指柱体不可通过自激励由涡激振动转变为驰振, 而是需要较大的外部激励产生驰振[67]. 系统存在临界阻尼比, 超过临界阻尼比后柱体仅发生涡激振动, 系统的临界阻尼比为柱体能量俘获的最优阻尼比. 阻尼比超过临界阻尼比时, 正三角形截面柱体的能量转换效率在涡激振动阶段对阻尼比的变化不敏感, 在驰振阶段随阻尼比的增大而升高[68]. Zou等[69]研究了来流攻角对正三角形截面柱体流激振动响应和能量俘获性能的影响. 来流攻角在0° ~ 30°之间时, 柱体流激振动幅值较小, 能量俘获功率近乎为0; 来流攻角在30° ~ 60°之间时, 能量俘获功率随流速增大单调增长. 攻角为60°时, 能量俘获功率最高, 此时无量纲振幅可高达3.0. 通过分析柱体的尾涡模式可以发现, 攻角较高的条件下旋涡脱落模式由2S型(2个独立旋涡)过渡到P + S型(1对旋涡 + 1个独立旋涡), 导致作用于柱体的非定常流体载荷增强, 从而提高了柱体振幅和能量俘获功率. Yan等[70]基于正三角形截面柱体流激振动能量俘获应用场景, 考虑发电机磁通密度的影响建立能量俘获模型, 研究了能量转换效率和能量俘获能力. 系统阻尼随磁通密度的增加而增大, 正三角形截面柱体的振动响应由软驰振转变为硬驰振. 通过合理的控制策略调整发电机的励磁电压, 进而控制磁通密度, 能够使柱体保持较高的能量俘获能力. 为了进一步提高三角形截面柱体流激振动能量俘获能力, Shao等[71]研究了不同边高比(等腰三角形底边与底边高之比)的等腰三角形截面柱体流激振动响应特性. 边高比低于1.0时, 柱体产生涡激振动, 仅在外部激励下发生硬驰振, 在硬驰振过程中能量俘获功率较高; 边高比为1.0和1.5时, 随着流速增大柱体由涡激振动转变为驰振, 即产生软驰振, 能量俘获功率随流速持续增长, 但软驰振过程中的能量俘获功率低于硬驰振过程.

    除了圆形、三角形和方形截面柱体, 梯形、菱形、六边形、八边形等其他截面形式柱体的流激振动特性也获得了一定关注, 并对不同截面形式柱体流激振动的能量俘获能力进行了综合对比[51-52, 72]. Ding等[51]通过数值仿真分析了PTC圆柱、正三角形截面柱体、正方形截面柱体、准梯形截面柱体流激振动的能量转换效率. 准梯形截面柱体长边迎流时, 随流速增大柱体依次产生涡激振动和驰振; 短边迎流时, 柱体出现低幅高频振动响应. 对比能量转换效率结果, 长边迎流的准梯形截面柱体略高于PTC圆柱, 显著高于正三角形截面柱体和方形截面柱体. 李恒[72]实验观测了梯形和菱形截面柱体的流激振动特性. 当梯形截面柱体长边迎流时, 柱体能够产生涡激振动和驰振, 其驰振阶段的振幅整体略高于正三角形截面柱体的振幅. 菱形截面柱体的流激振动特征与攻角为45°时的正方形截面柱体的振动特征类似, 但其振幅存在较大差异. 若菱形的迎流向对角线长于垂直流向对角线时, 菱形截面柱体振幅高于正方形截面柱体的振幅, 反之振幅结果降低. Zhang等[52]对6种不同截面形状(三角形、正方形、六边形、八边形、二十四边形和圆形)的柱体流激振动能量俘获能力进行了对比(如图8所示). 三角形、正方形、六边形和八边形截面柱体在来流作用下先发生涡激振动, 随着流速增大后发生驰振; 而二十四边形和圆形截面柱体仅发生涡激振动, 随着流速增大柱体振幅保持在极低水平. 在涡激振动区域, 圆柱的流激振动振幅和能量转换效率最高; 在驰振区域, 柱体流激振动振幅和能量俘获功率随横截面形状边数减小而增大, 即三角形 > 正方形 > 六边形 > 八边形. 从柱体的尾流模式可以进一步阐述不同截面形式产生不同获能效果的机理. 在低流速的涡激振动区域, 正方形、六边形、八边形和圆形截面柱体的尾涡模式为2S型, 而三角形截面柱体后的尾涡模式为2P型, 导致三角形截面柱体受到更强的流体载荷作用, 从而提高能量俘获功率. 在高流速的驰振区域, 三角形截面柱体后的尾涡模式为2S + 2P型, 相较于其他截面形式的柱体, 三角形截面柱体后的尾涡密度更高、强度更大, 因此获能功率和能量转换效率最高.

    图  8  不同非圆截面柱体的能量俘获功率[52]
    Figure  8.  Harnessed power of a single cylinder with non-circular cross-section[52]

    通过圆柱流激振动抑制研究发现, 柱体结构通过安装附属装置或改变截面形状后并非总是能有效抑制振动, 某些工况下反而增强振动, 这为柱体流激振动能量俘获提供了新思路. Wang等[53]发现在圆柱迎流面开不同形状的凹槽会对其流激振动特性产生显著影响. 对于方形凹槽圆柱, 开槽角度为30°, 60°和150°时柱体振幅增大、共振范围增加、能量俘获功率提升; 开槽角度为90°时, 柱体振动被抑制, 共振范围降低50%. 对于三角形和圆形凹槽圆柱, 开槽角度为90°时, 柱体振幅减小; 其他开槽角度下共振范围增大、能量俘获功率略有提升. 对于丁字形凹槽圆柱, 开槽角度为120°时, 柱体振幅增大、能量俘获功率提升; 开槽角度为90°时, 柱体振幅减小、能量俘获功率降低; 其他开槽角度下柱体振幅和能量俘获功率与光滑圆柱结果基本一致. Zhu等[54]基于仿生原理提出在圆柱外表面安装鳍状条带的方式提高流激振动能量俘获能力. 鳍状条带的安装角度为20°和45°时, 柱体产生I型硬驰振, 能量转换效率和俘获功率均显著提升; 安装角度为0°和60°时, 柱体产生II型硬驰振, 能量转换效率和俘获功率提升幅度较小; 安装角度为90°时, 柱体仅发生涡激振动; 安装角度为120°时, 柱体振动被抑制. 随后, Zhu等[55]发明了一种安装自由旋转五角星叶轮的圆柱振子, 能够同时俘获柱体振动能量和叶轮旋转能量. 叶轮的旋转方向不断变化, 会导致流体流动不稳定和水动力不稳定, 能够使柱体振子尾流宽度增加, 并产生不稳定的旋涡脱落, 从而增强柱体振子振幅和能量俘获功率. Barati等[73]通过数值仿真研究了弓形(圆弧与其对应的弦围成的图形)截面柱体流激振动能量俘获能力. 柱体弧面迎流, 关注了5种长宽比(柱体沿流向长度与柱体垂直流向宽度之比)的影响. 随着长宽比的增大, 柱体振子的旋涡脱落频率降低, 但振幅和能量俘获功率增大. Shao等[74]和燕翔等[75]实验研究了T形截面柱体振子的流激振动特性与能量俘获能力. 柱体T形截面的顶部迎流, 关注了5种长宽比(柱体沿流向长度与柱体垂直流向宽度之比)的影响. 随着截面长宽比的增大, 振动响应逐渐由硬驰振转化为软驰振, 且驰振阶段的振幅与频率均有所降低, 对应的能量转换效率减小. Lian等[76]和冉聃颉等[77]将圆形和多边形组合形成了多种复杂截面形状, 并实验研究了复杂截面形状柱体的能量俘获能力. 弓形、三角形和T形组合而成的复杂截面形状柱体较正三角形截面柱体具有更高的能量俘获能力. 从众多复杂截面形状柱体流激振动能量俘获结果总结发现, 当柱体截面迎流面具有对称尖锐凸起、被流面无旋涡再附着的特点时, 有利于柱体振子在大阻尼下发生自激驰振, 更有利于能量俘获.

    对于大规模的流激振动能量开发, 各柱体振子之间不可避免地存在流场干涉. 在尾流作用下, 柱体结构的振动可能增强[78-83], 有利于流激振动能量俘获.

    双圆柱系统通常被认为是柱群系统的基本组成单元, 具有并列、串列和交错3种排布方式[84]. 对于串列和交错排布的双圆柱, 在特定间距比范围内因尾流干涉而产生大幅振动. 低雷诺数下的光滑双圆柱系统流激振动的能量转换效率偏低[85], 仍然有必要为圆柱振子安装PTC装置以提高能量俘获能力. Sun等[86]通过模型实验研究了间距和刚度对串列排布带有PTC双圆柱振子VIVACE装置的流体能量俘获效果. 对于所关注的3种间距比(1.57, 2.0和2.57), 双圆柱的能量俘获功率是单圆柱的2.56 ~ 13.49倍; 能量转换效率为单圆柱的2.0 ~ 6.68倍. 受到下游圆柱的影响, 上游圆柱的能量转换功率增长多达100%. 下游圆柱的能量转换功率因干涉作用的影响在不同流速下发生显著变化. 串列排布双圆柱振子的VIVACE装置能够利用流速低至0.4 m/s的流动能量, 并且无流速上限, 最大能量俘获功率出现在间距较小、弹簧刚度较大时. Xu等[87]实验研究了阻尼比和刚度对交错排布带有PTC双圆柱振子VIVACE装置的流体能量俘获效果. 双圆柱在垂直来流方向的间距比为1.0, 在沿来流方向的间距比为2.57. 双圆柱的能量俘获功率随阻尼比的增大而升高, 且高于两个单体圆柱流激振动的能量俘获功率(如图9所示). 较低的刚度有利于双圆柱的启动, 能够在较低的流速下实现流体能量俘获. Ding等[88]通过数值仿真分析了下游圆柱流激振动能量俘获功率低于上游圆柱的原因. 在Re为60000的涡激振动响应区域, 下游圆柱在小间距比为2.0工况下受上游圆柱遮蔽作用的影响, 振动被显著抑制, 能量俘获功率和转换效率降低; 在Re为110000的驰振响应区域, 由上游圆柱脱落的旋涡在不同的时机冲击下游圆柱, 导致下游圆柱的能量俘获功率和转换效率低于上游圆柱的结果. 通过尾流场发现, 在低流速的涡激振动区域, 上游圆柱和下游圆柱之间的间隙流方向与下游圆柱振动方向相反, 下游圆柱的振动响应被抑制, 能量转换功率降低; 在高流速的驰振区域, 间隙流抵达下游圆柱的下侧区域, 推动下游圆柱朝其运动方向移动, 进一步增大振幅, 提升能量转换功率[86]. 通过分析柱体系统参数影响规律发现, 在圆柱发生涡激振动区域, 随着系统刚度和固有频率的增加, 遮蔽效应大幅减弱, 但若下游圆柱上、下两侧脱落的旋涡由于上游圆柱脱落的旋涡吸引而积累不够时, 会导致下游圆柱振动受到一定程度的抑制. 在圆柱发生驰振区域, 遮蔽效应的强弱取决于下游圆柱附近的涡量是被上游圆柱剪切层产生的涡流增强还是减弱.

    图  9  交错排布圆柱的能量俘获功率[87]
    Figure  9.  Harnessed power of two staggered cylinders[87]

    为了提高下游圆柱流激振动能量俘获能力, 研究上游圆柱对下游圆柱的遮蔽效应十分必要. Sun等[89]系统地总结了遮蔽效应的产生原因及规避措施. 下游圆柱受到的遮蔽效应与阻尼比密切相关, 随着阻尼比的增加, 遮蔽效应减弱, 下游圆柱的振动恢复较为稳定的幅值和频率. 为了改善下游圆柱的遮蔽效应, Sun等[90]系统地研究了自适应阻尼系数下串列排布双圆柱VIVACE装置的流激振动响应特性及能量俘获性能. 通过使用与速度成正比的自适应阻尼系数, VIVACE装置的能量俘获能力有所提升. 对于串列排布的双圆柱振子, 自适应阻尼能够减小上游圆柱对下游圆柱的遮蔽效应, 使下游圆柱的能量俘获功率翻倍. 自适应阻尼能降低VIVACE装置的启动流速, 提高其高效运行的流速范围, 并提升能力输出的稳定性, 使能量俘获功率在涡激振动和驰振的过渡区不产生显著下滑. Zhang等[91]基于串列双圆柱的4种尾流干涉区, 即剪切层再附着区(间距比1.5 ~ 2.5)、共同脱涡区(间距比2.5 ~ 6.5)、尾流干扰区(间距比6.5 ~ 13.0)和不干涉区(间距比13.0 ~ 20.0), 提出了线性和非线性的分段变阻尼模型, 能够增强下游圆柱振动响应. 在剪切层再附着区和不干涉区, 非线性变阻尼模型能够提升下游圆柱能量俘获功率和能量转换效率; 而在共同脱涡区和尾流干扰区, 线性变阻尼模型更具优势(如图10所示).

    图  10  分段阻尼下串列圆柱的能量俘获功率[91]
    Figure  10.  Harnessed power of two tandem cylinders with segmental damping[91]

    两个圆柱外径不一致的情形也得到一定关注. Chen等[92]实验研究了不等径串列圆柱流激振动响应特性, 上游圆柱外径与下游圆柱外径的比值为0.4. 阻尼比较小时, 下游圆柱随流速增大依次发生涡激振动和驰振, 且存在两者之间的过渡区; 阻尼比较大时, 低流速下的涡激振动被抑制, 涡激振动幅值和范围随阻尼增大而减小, 高流速下发生驰振, 能量俘获功率较高. 下游圆柱驰振发生的临界速度随阻尼比增大而升高, 但随间距比增大而降低. Bai等[93]研究了双圆柱外径比和间距比对流激振动能量俘获的影响. 在较小的间距比下, 等径双圆柱的能量俘获能力较低, 随着间距比增大, 等径双圆柱的能量俘获功率增大, 但整体低于不等径双圆柱的结果. 间距比3 ~ 6、直径比0.6的双圆柱能量俘获功率更高且更稳定. Tang等[94]研究了上游圆柱外径高于下游圆柱外径时(直径比大于1.0)串列双圆柱的流激振动能量俘获能力. 相较于等径双圆柱, 直径比为2.0时, 能量俘获功率的极值略有增大, 但极值对应的流速也同步升高; 直径比为3.0时, 能量俘获功率在高流速区域出现显著增大的极值.

    随着圆柱数量的增多, 圆柱间的尾流干涉更为复杂. 因此, 一些学者关注了多根圆柱系统的流激振动能量转换特性. Ding等[95]研究了串列排布带有PTC三圆柱振子VIVACE装置的响应特性和流体能量俘获效果. 圆柱之间的间距比固定为2.5. 随着流速增大三圆柱的振动响应可划分为涡激振动初始分支区、涡激振动上分支区和涡激振动向驰振转换区和驰振区. 下游圆柱受到上游圆柱尾流的强烈干扰, 最下游圆柱的涡激振动初始分支响应被抑制, 中间圆柱的尾流模式在涡激振动向驰振转换区与上游圆柱发生变化(如图11所示). 三圆柱系统的能量俘获功率高于3个孤立单圆柱的能量俘获功率, 能量转换效率在涡激振动上分支较单圆柱高35%, 在驰振区与单圆柱相当. Han等[96]通过数值仿真研究了正三角形排布的三圆柱振子流体能量俘获效果. 3个圆柱的振动完全同步, 其中两个圆柱连线形成的正三角形底边与来流方向垂直, 圆柱间距比的变化范围为1.01 ~ 2.0. 随着间距比的减小, 三圆柱系统易产生低频的大幅值振动, 间距比为1.5时三圆柱系统产生一个高于涡激振动上分支的新响应分支. 间距比低于1.5时三圆柱系统在高流速范围内存在更好的能量俘获能力, 间距比为2.0时三圆柱系统在低流速范围的能量转换效率提升, 综合而言1.2为最佳间距比. Wang等[97]重点关注了三角形排布的三圆柱系统中上游双圆柱尾流对下游圆柱流激振动能量俘获性能的影响. 在上游双圆柱的尾流影响下, 下游圆柱发生驰振, 能量俘获功率和转换效率均高于孤立单圆柱的结果. 随着上游双圆柱与下游圆柱的距离增大, 尾流干扰作用减弱, 下游圆柱的能量俘获功率下降. Rabiee等[98]研究了来流攻角对三角形排布三圆柱系统流体能量俘获效果的影响. 来流攻角为0°和90°时, 三圆柱系统的能量俘获功率较三个孤立单圆柱能量俘获功率总和提升173%; 攻角为45°时, 三圆柱系统的能量俘获功率较3个孤立单圆柱能量俘获功率总和提升288%.

    图  11  串列三圆柱的尾涡模式[95]
    Figure  11.  Wake modes of three tandem cylinders[95]

    目前关于大规模圆柱群流激振动能量俘获的相关研究相对偏少. 罗竹梅等[99-100]发现耦合连接的四圆柱系统和五圆柱系统更有利于俘获在低流速下的流体能量. Zhang等[101]通过数值仿真揭示了交错排布四圆柱系统的流激振动能量俘获性能. 交错排布四圆柱之间的干涉作用可根据间距比划分为3个区域. 间距比小于2.0时为四圆柱同步振动区域, 4个圆柱的振动相位和频率保持一致; 间距比2.0 ~ 4.0时为振动抑制区域, 上游3个圆柱的振动因旋涡脱落被下游圆柱干扰而被显著抑制, 但下游圆柱的振动因上游不稳定流场作用被显著增强, 尾流中的低压涡流在上游圆柱的推动下, 循环作用于下游圆柱, 增强了下游圆柱受到的流体载荷, 进一步提高能量转换功率; 间距比大于4.0时为振动恢复区域, 四圆柱之间的相互干涉作用减弱, 振动恢复至孤立单圆柱的振动水平. 整体而言, 交错排布四圆柱的能量俘获功率随间距增大呈下降趋势. Kim等[102]研究了由串列排布的4台单圆柱VIVACE模组组成的柱群结构流激振动能量转换性能. 相比于孤立的单圆柱VIVACE装置, 多台VIVACE装置组成的柱群结构能够利用更多的能量. 四圆柱振子的VIVACE装置能够有效地利用流速低至0.8 ~ 1.5 m/s的河流或潮流中蕴含的流动能量, 且对最高流速没有限制. 为了推动VIVACE装置的工程应用, 美国VHE (Vortex Hydro Energy)公司获取了VIVACE装置的专利转化许可, 并开展了多次现场应用测试. 2010年, VHE公司在美国密歇根州休伦港的圣克莱尔河对VIVACE装置进行了首次公开测试. 2012年, VHE公司又在圣克莱尔河开展了VIVACE装置的第2次测试. 2013年, VHE公司在美国新泽西州溢油反应研究中心开展了VIVACE装置的拖曳测试. 2016年, VHE公司对最新型的VIVACE装置在圣克莱尔河开展了第3次测试, 重点关注了VIVACE装置在海洋中的生存能力. 这些现场测试工作为商业化应用提供了经验参考, 但目前为止, VIVACE装置仍未开始商业化应用.

    由于三角形、四边形等非圆截面单柱在某些工况下具有较高的能量俘获能力, 非圆截面柱群流激振动的能量俘获效果也引起了一定关注.

    两个正三角形截面柱体组成的能量收集系统设计应重点考虑排布方式和间距比. 并列排布的正三角形截面柱体不利于能量利用, 主要原因是两个柱体振子之间存在强烈的相互干扰, 振动极不稳定, 振幅均被明显抑制. 在小间距比为1.0工况下, 两个柱体可视为同一阻流体, 尾流模式为S + P型, 尾涡的尾迹较长; 间距比为2.0工况下, 两个柱体分别脱涡, 由于尾涡的相互挤压, 一个柱体尾涡为2P + S型, 另一个柱体尾涡为3P型; 在间距比为2.0工况下, 两个柱体的尾涡均为3P型, 柱体的尾涡同步脱落现象更为明显, 尾涡更为清晰, 相互挤压现象减弱[103]. 串列排布的正三角形截面柱体响应耦合机制受流速、振子间距等因素的共同作用, 最佳的能量俘获间距比约为5.0. 低流速时因上游柱体的遮蔽效应, 下游柱体的振动被抑制, 随着流速增大下游柱体振幅逐渐增大. 串列柱体能量俘获的启动流速为0.4 m/s, 能量俘获功率随速度增大持续增加. 整体而言, 下游柱体对上游柱体的能量俘获具有促进作用, 下游柱体的振动和能量转换在一定程度上受到上游柱体的不利影响. 交错排布的正三角形截面柱体在间距比4.0 ~ 6.0时, 上游柱体的旋涡脱落对下游柱体的振动具有促进作用, 下游柱体具有较高的能量俘获功率, 两个柱体的振动联动性强, 相位差维持在稳定范围, 有利于能量俘获, 能量俘获功率高于串列双柱体[104], 如图12所示.

    方形截面柱体在上游固定方形截面柱体尾流的作用下能量俘获功率呈上升趋势[105]. 攻角为0°时, 下游柱体不再出现驰振响应, 而是在较高的流速条件下持续保持较高振幅, 最高能量俘获功率较单个方形截面柱体提升3.8倍, 但随间距比的增大而降低. 攻角为45°时, 由于高流速条件下尾流模式的变化, 下游柱体的振幅被上游尾流显著增强, 能量俘获功率较单个方形截面柱体提升约3 ~ 5倍. 随后, Tamimi等[106]进一步研究了可自由振动的两个方形截面柱体的能量俘获性能. 在上游振动柱体的尾流作用下, 虽然下游柱体的能量俘获功率略有下降, 但上下游两个柱体的整体能量俘获功率和转换效率显著提升.

    图  12  交错三角形截面柱体中下游柱体的能量俘获功率[104]
    Figure  12.  Harnessed power of downstream cylinder of two staggered cylinders with triangular section[104]

    对于串列排布的T形截面柱体系统, 应当谨慎设计柱体的间距[107]. 在大多数间距条件下, 由于两个柱体的相互干扰, 上、下游柱体的振幅和能量俘获功率均低于单个T形截面柱体的结果. 但在某些特定工况下, 两个柱体之间的相互干扰有利于流体能量俘获. 间距比3.0 ~ 6.0时, 上游柱体在下游柱体的影响下发生软驰振响应, 而不是单个T形截面柱体发生的涡激振动响应, 上游圆柱的能量俘获功率随流速增大而持续增长, 同时由于上游柱体尾流的促进作用, 下游柱体的振幅随流速增大而增长, 最终高于单个T形截面柱体的振幅, 下游柱体的能量俘获功率也同步提升. 双T形截面柱体系统能量转换的最佳功率出现在间距比为6.0的工况下.

    为了最大程度地实现能量俘获, 一些学者提出了不同截面形式柱体组合形成的流激振动能量俘获系统. Liu等[108]提出了一种由方形截面柱体和圆形截面柱体组合构成的流激振动能量俘获系统(如图13所示). 方形截面柱体和圆形截面柱体通过弹簧-阻尼系统耦合连接, 其中圆形截面柱体在靠近自由液面的下方布置, 用于俘获水流中的能量, 方形截面柱体在靠近自由液面的上方布置, 用于俘获空气中的能量. 不同截面形式柱体的组合应用实现了能量俘获功率、能量转换效率和流速适应性的改善. Tamimi等[109]提出将方形截面柱体和圆形截面柱体串列排布, 发现在上游方形截面柱体尾流作用下, 下游圆形截面柱体的能量俘获功率提高了2倍.

    图  13  组合形式的流激振动能量俘获系统示意图[108]
    Figure  13.  Schematic diagram of a combined FIV energy harvesting system[108]

    流激振动是工程中十分常见的流固耦合现象, 利用流激振动进行潮流能开发极具工程应用前景. 本文回顾了近年来关于柱体流激振动能量俘获的研究工作, 总结了多种截面形式的单个柱体、柱群结构流激振动能量俘获理论与技术方面的研究进展.

    (1)单个光滑圆柱在某些雷诺数范围内无法激发高幅值振动, 难以实现能量俘获, 通过安装被动湍流控制器PTC能够显著提升能量俘获性能. 以美国密歇根大学Bernitsas教授团队为代表的学者已基本揭示了PTC参数、系统阻尼、系统刚度、雷诺数、自由液面效应和底边壁效应等因素对能量俘获性能的影响规律, 初步完成了理论和技术积累.

    (2)非圆截面柱体易激发大幅值的驰振, 其流激振动的响应特性和能量俘获被广泛关注. 某些特定来流攻角、系统质量比、系统阻尼、系统刚度、雷诺数条件下三角形、四边形、多边形和异形等多种截面形式柱体的流激振动作用机理和能量俘获能力已初步明确. 当柱体截面迎流面具有对称尖锐凸起、被流面无旋涡再附着的特点时, 有利于在大阻尼下发生自激驰振, 能量俘获能力更强.

    (3)对于大规模的流激振动能量开发, 各柱体振子之间存在流场干涉, 需要合理设计柱体排布形式、柱体间距和系统阻尼等参数, 实现流体能量俘获最大化. 对于圆形截面柱群, 下游圆柱在上游圆柱的遮蔽效应下能量俘获性能下降, 需要通过系统自适应阻尼控制, 提高振动幅值和稳定性, 从而提升下游圆柱的能量俘获能力. 合理设计的圆柱群系统相较于同等数量的单个圆柱具有更高的能量俘获功率和转换效率.

    (4)三角形、方形和T形截面双柱体的流激振动能量俘获的相关研究较少. 通常上游柱体的流激振动幅值和能量俘获性能会受到下游柱体的促进作用. 下游柱体的能量俘获性能受到间距比的显著影响, 小间距比时下游柱体的能量俘获性能因上游柱体的遮蔽效应下降, 随着间距比增大, 下游柱体的能量俘获性能逐渐提升.

    本文在回顾与总结中发现: 柱体流激振动能量俘获研究及工程应用推广中存在一些问题有待进一步解决:

    (1)以双柱体、多柱体为对象的流激振动能量俘获性能研究成果如何拓展至大规模柱群系统流激振动能量开发利用有待于进一步论证;

    (2)影响流激振动能量俘获性能的因素众多, 包括来流速度、雷诺数、排布形式、柱体截面形式、系统阻尼和刚度参数等, 如何综合考虑多因素影响实现能量俘获性能最优设计是有待解决的难题;

    (3)目前关于柱体结构流激振动能量俘获功率和转换效率的结果大多基于理论、数值分析和室内模型实验, 仍有待通过样机测试和示范性工程应用加以检验.

  • 图  1   流激振动能量俘获装置示意图[18]

    Figure  1.   Schematic of energy harvesting device based on FIV[18]

    图  2   VIVACE与波浪能及潮流能发电装置的能量密度[18]

    Figure  2.   The energy density of VIVACE, wave and other tidal energy harvesting devices[18]

    图  3   安装PTC的圆柱模型[35-36]

    Figure  3.   Cylinder model with PTC[35-36]

    图  4   近自由液面PTC圆柱的能量俘获功率[42]

    Figure  4.   Harnessed power of a single cylinder with PTC near the free surface[42]

    图  5   虚拟阻尼-弹簧系统[45]

    Figure  5.   Virtual damper-spring system[45]

    图  6   非圆截面柱体示意图[49-55]

    Figure  6.   Schematic of the cylinder with non-circular cross-section[49-55]

    图  7   不同质量比下方柱的振动幅值[62]

    Figure  7.   Vibration amplitude of a square cylinder with different mass ratio[62]

    图  8   不同非圆截面柱体的能量俘获功率[52]

    Figure  8.   Harnessed power of a single cylinder with non-circular cross-section[52]

    图  9   交错排布圆柱的能量俘获功率[87]

    Figure  9.   Harnessed power of two staggered cylinders[87]

    图  10   分段阻尼下串列圆柱的能量俘获功率[91]

    Figure  10.   Harnessed power of two tandem cylinders with segmental damping[91]

    图  11   串列三圆柱的尾涡模式[95]

    Figure  11.   Wake modes of three tandem cylinders[95]

    图  12   交错三角形截面柱体中下游柱体的能量俘获功率[104]

    Figure  12.   Harnessed power of downstream cylinder of two staggered cylinders with triangular section[104]

    图  13   组合形式的流激振动能量俘获系统示意图[108]

    Figure  13.   Schematic diagram of a combined FIV energy harvesting system[108]

  • [1]

    Hammons TJ. Tidal power. Proceedings of the IEEE, 1993, 81(3): 419-433 doi: 10.1109/5.241486

    [2] 于华明, 刘容子, 鲍献文等. 海洋可再生能源发展现状与展望. 青岛: 中国海洋大学出版社, 2012 (Yu Huaming, Liu Rongzi, Bao Xianwen, et al. The Development and Prospect of the Marine Renewable Energy. Qingdao: China Ocean University Press, 2012 (in Chinese)

    Yu Huaming, Liu Rongzi, Bao Xianwen, et al. The Development and Prospect of the Marine Renewable Energy. Qingdao: China Ocean University Press, 2012 (in Chinese)

    [3] 刘美琴, 仲颖, 郑源等. 海洋能利用技术研究进展与展望. 可再生能源, 2009, 27(5): 78-81 (Liu Meiqin, Zhong Ying, Zheng Yuan, et al. Research status and prospects of marine current energy utilization technology. Renewable Energy Resources, 2009, 27(5): 78-81 (in Chinese)

    Liu Meiqin, Zhong Ying, Zheng Yuan, et al. Research status and prospects of marine current energy utilization technology. Renewable Energy Resources, 2009, 27(5): 78-81 (in Chinese)

    [4] 胡振兴. 潮流能发电装置功率控制系统设计与开发. [硕士论文]. 青岛: 中国海洋大学, 2013 (Hu Zhenxing. Design and development on the power control system for tidal current energy power generation equipment. [Master Thesis]. Qingdao: Ocean University of China, 2013 (in Chinese)

    Hu Zhenxing. Design and development on the power control system for tidal current energy power generation equipment. [Master Thesis]. Qingdao: Ocean University of China, 2013 (in Chinese)

    [5] 郑洁, 杨淑涵, 柳存根等. 海洋可再生能源装备技术发展研究. 中国工程科学, 2023, 25(3): 23-32 (Yang Jie, Yang Shuan, Liu Cungen, et al. Development of marine renewable energy equipment and technologies. Strategic Study of Chinese Academy of Engineering, 2023, 25(3): 23-32 (in Chinese)

    Yang Jie, Yang Shuan, Liu Cungen, et al. Development of marine renewable energy equipment and technologies. Strategic Study of Chinese Academy of Engineering, 2023, 25(3): 23-32 (in Chinese)

    [6]

    Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735 doi: 10.1016/j.jweia.2007.06.019

    [7] 及春宁, 李非凡, 陈威霖等. 圆柱涡激振动研究进展与展望. 海洋技术学报, 2015, 34(1): 106-118 (Ji Chunning, Li Feifan, Chen Weilin, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders. Journal of Ocean Technology, 2015, 34(1): 106-118 (in Chinese)

    Ji Chunning, Li Feifan, Chen Weilin, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders. Journal of Ocean Technology, 2015, 34(1): 106-118 (in Chinese)

    [8]

    Liu GJ, Li HY, Qiu ZZ, et al. A mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Engineering, 2020, 195: 106704 doi: 10.1016/j.oceaneng.2019.106704

    [9] 徐万海, 马烨璇. 倾斜圆柱结构涡激振动研究进展. 力学学报, 2022, 54(10): 2641-2658 (Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 (in Chinese)

    Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 (in Chinese)

    [10]

    Ma LX, Lin K, Fan DX, et al. Flexible cylinder flow-induced vibration. Physics of Fluids, 2022, 34: 011302 doi: 10.1063/5.0078418

    [11]

    Ma XQ, Zhou SX. A review of flow-induced vibration energy harvesters. Energy Conversion and Management, 2022, 254: 115223 doi: 10.1016/j.enconman.2022.115223

    [12]

    Wang JL, Geng LF, Ding L, et al. The state-of-the-art review on energy harvesting of flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902

    [13] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望. 南水北调与水利科技, 2018, 16(1): 176-188 (Lian Jijian, Yan Xiang, Liu Fang. Development and prospect of study on the energy harness of flow-induced motion. South to North Water Transfers and Water Science & Technology, 2018, 16(1): 176-188 (in Chinese)

    Lian Jijian, Yan Xiang, Liu Fang. Development and prospect of study on the energy harness of flow-induced motion. South to North Water Transfers and Water Science & Technology, 2018, 16(1): 176-188 (in Chinese)

    [14]

    Mehmood A, Abdelkefi A, Hajj MR, et al. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. Journal of Sound and Vibration, 2013, 332(19): 4656-4667 doi: 10.1016/j.jsv.2013.03.033

    [15]

    Dai HL, Abdelkefi A, Wang L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. Journal of Intelligent Material Systems and Structures, 2014, 25(14): 1861-1874 doi: 10.1177/1045389X14538329

    [16]

    Dai HL, Abdelkefi A, Wang L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dynamics, 2014, 77: 967-981 doi: 10.1007/s11071-014-1355-8

    [17]

    Wang DA, Chiu CY, Pham HT. Electromagnetic energy harvesting from vibrations induced by Kármán vortex street. Mechatronics, 2012, 22: 746-756 doi: 10.1016/j.mechatronics.2012.03.005

    [18]

    Bernitsas MM, Ben-Simon Y, Raghavan K, et al. VIVACE (vortex induced vibration for aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 041101 doi: 10.1115/1.2957913

    [19]

    Bernitsas MM, Ben-Simon Y, Raghavan K, et al. The VIVACE converter: Model test at high damping and Reynolds number around 105. Journal of Offshore Mechanics and Arctic Engineering, 2008, 131(1): 011102

    [20]

    Erturk A, Inman DJ. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 2009, 18(2): 025009 doi: 10.1088/0964-1726/18/2/025009

    [21]

    Allen JJ, Smits AJ. Energy harvesting. Journal of Fluids and Structures, 2001, 15(3): 629-640

    [22]

    Taylor GW, Burns JR, Kammann SA, et al. The energy harvesting eel: a small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 2001, 26(4): 539-547 doi: 10.1109/48.972090

    [23]

    Hobbs WB, Hu DL. Tree-inspired piezoelectric energy harvesting. Journal of Fluids and Structures, 2012, 28: 103-114 doi: 10.1016/j.jfluidstructs.2011.08.005

    [24]

    Hobbs WB. Piezoelectric energy harvesting: vortex induced vibrations in plants, soap films, and arrays of cylinders. [PhD Thesis]. Atlanta: Georgia Institute of Technology, 2010

    [25]

    Muralt P. Ferroelectric thin films for micro-sensors and actuators: A review. Journal of Micromechanics and Microengineering, 2000, 10(2): 136-146 doi: 10.1088/0960-1317/10/2/307

    [26]

    Shi S, New TH, Liu Y. Flapping dynamics of a low aspect-ratio energy-harvesting membrane immersed in a square cylinder wake. Experimental Thermal and Fluid Science, 2013, 46: 151-161 doi: 10.1016/j.expthermflusci.2012.12.007

    [27]

    Gao X, Shih WH, Shih WY. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Transactions on Industrial Electronics, 2012, 60: 1116-1118

    [28]

    Kim ES, Sun H, Park H, et al. Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy. Renewable and Sustainable Energy Reviews, 2021, 145: 111094 doi: 10.1016/j.rser.2021.111094

    [29]

    Blevins RD. Flow-Induced Vibration, 2nd edn. Florida: Krieger Publishing Company, 1990

    [30]

    White FM. Fluid Mechanics, 5th edn. New York: McGraw Hill, 2005

    [31]

    Raghavan K. Energy extraction from a steady flow using vortex induced vibration. [PhD Thesis]. Ann Arbor: The University of Michigan, 2007

    [32]

    Chang CC, Bernitsas MM. Design of VIVACE converter using PTC//Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, 2011: 733-744

    [33]

    Zhang BS, Li BY, Fu S, et al. Experimental investigation of the effect of high damping on the VIV energy converter near the free surface. Energy, 2022, 244: 122677 doi: 10.1016/j.energy.2021.122677

    [34]

    Bernitsas MM. Raghavan K. Reduction/suppression of VIV of circular cylinders through roughness distribution at 8 × 103 < Re < 1.5 × 104//Proceedings of the ASME 2008 27th International Conference on Ocean, Offshore and Arctic Engineering. Estoril, 2008: 1001-1005

    [35]

    Bernitsas MM, Raghavan K, Duchene G. Induced separation and vorticity using roughness in VIV of circular cylinders at 8 × 103 < Re < 2.0 × 105//Proceedings of the 2008 27th International Conference on Ocean, Offshore and Arctic Engineering. Estoril, 2008: 993-999

    [36]

    Park H, Bernitsas MM, Kumar RA. Selective roughness in the boundary layer to supress flow-induced motions of circular cylinder at 30000 < Re < 120000. Journal of Offshore Mechanics and Arctic Engineering, 2010, 134(4): 041801

    [37]

    Chang CC, Kumar RA, Bernitsas MM. VIV and galloping of single circular cylinder with surface roughness at 3.0 × 104 Re ≤ 1.2 × 105. Ocean Engineering, 2011, 38: 1713-1732 doi: 10.1016/j.oceaneng.2011.07.013

    [38]

    Wu W, Bernitsas MM, Maki K. RANS simulation vs. experiments of flow induced motion of circular cylinder with passive turbulence control at 35000 < Re < 130000//Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, 2011: 733-744

    [39]

    Zhang DH, Feng L, Yang H, et al. Vortex-induced vibration characteristics of a PTC cylinder with a free surface effect. Energies, 2020, 13(4): 907 doi: 10.3390/en13040907

    [40]

    Raghavan K, Bernitsas MM. Enhancement of high damping VIV through roughness distribution for energy harnessing at 8 × 103 < Re < 1.5 × 105//Proceedings of the ASME 27th International Conference on Ocean, Offshore and Arctic Engineering. Estoril, 2008: 871-882

    [41] 徐万海, 罗浩, 孙海. 近自由表面海流能发电装置VIVACE流激振动的实验研究. 振动与冲击, 2019, 38(4): 83-89 (Xu Wanhai, Luo Hao, Sun Hai. An experimental study on flow-induced vibration of the VIVACE converter for harnessing ocean flow energy beneath a free surface. Journal of Vibration and Shock, 2019, 38(4): 83-89 (in Chinese)

    Xu Wanhai, Luo Hao, Sun Hai. An experimental study on flow-induced vibration of the VIVACE converter for harnessing ocean flow energy beneath a free surface. Journal of Vibration and Shock, 2019, 38(4): 83-89 (in Chinese)

    [42]

    Xu WH, Yang M, Wang EH. Performance of single-cylinder VIVACE converter for hydrokinetic energy harvesting from flow-induced vibration near a free surface. Ocean Engineering, 2020, 218: 108168 doi: 10.1016/j.oceaneng.2020.108168

    [43]

    Lee JH, Bernitsas MM. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engineering, 2011, 38(16): 1697-1712 doi: 10.1016/j.oceaneng.2011.06.007

    [44]

    Lee JH, Xiros N, Bernitsas MM. Virtual damper-spring system for VIV experiments and hydrokinetic energy conversion. Ocean Engineering, 2011, 38(5-6): 732-747 doi: 10.1016/j.oceaneng.2010.12.014

    [45]

    Sun Hai, Kim ES, Bernitsas MP, et al. Virtual spring-damping system for flow-induced motion experiments. Journal of Offshore Mechanics and Arctic Engineering, 2015, 37: 061801

    [46]

    Bernitsas MM, Raghavan K. Converter of current/tide/wave energy. Provisional Patent Application. United States Patent and Trademark Office Serial, 2004, 60(628, 252

    [47]

    Bernitsas MM, Raghavan K. Fluid motion energy converter. Provisional Patent Application. United States Patent and Trademark Office Serial, 2005, 11(272, 504

    [48]

    Bernitsas MM, Raghavan K. Enhancement of vortex induced forces and motion through surface roughness control. Provisional Patent Application. United States Patent and Trademark Office Serial, 2011, 8(047, 232

    [49]

    Tamimi V, Seif MS, Shahvaghar-Asl S, et al. FIV energy harvesting from sharp edge square and diamond oscillators. International Journal of Maritime Technology, 2019, 12: 1-8 doi: 10.29252/ijmt.12.1

    [50]

    Seyed-Aghazadeh B, Carlson DW, Modarres-Sadeghi Y. Vortex-induced vibration and galloping of prisms with triangular cross-sections. Journal of Fluid Mechanics, 2017, 817: 590-618 doi: 10.1017/jfm.2017.119

    [51]

    Ding L, Zhang L, Wu CW, et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections. Energy Conversion and Management, 2015, 91: 416-426 doi: 10.1016/j.enconman.2014.12.039

    [52]

    Zhang BS, Song BW, Mao ZY, et al. Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections from triangle to circle. Energy, 2019, 189: 116249 doi: 10.1016/j.energy.2019.116249

    [53]

    Wang JL, Sheng LJ, Ding L. A comprehensive numerical study on flow-induced vibrations with various groove structures suppression or enhancing energy scavenging. Ocean Engineering, 2023, 271: 113781 doi: 10.1016/j.oceaneng.2023.113781

    [54]

    Zhu HJ, Zhao Y, Zhou TM. CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller. Applied Energy, 2018, 212: 304-321 doi: 10.1016/j.apenergy.2017.12.059

    [55]

    Zhu HJ, Gao Y. Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips. Energy, 2018, 165: 1259-1281 doi: 10.1016/j.energy.2018.10.109

    [56]

    Obasaju ED, Ermshaus R, Naudascher E. Vortex-induced streamwise oscillations of a square-section cylinders in a uniform stream. Journal of Fluid Mechanics, 1990, 213: 171-189 doi: 10.1017/S0022112090002270

    [57]

    Zhao J, Leontini JS, Lo Jacono D, et al. Fluid-structure interaction of a square cylinder at different angles of attack. Journal of Fluid Mechanics, 2014, 747: 688-721 doi: 10.1017/jfm.2014.167

    [58] 徐枫, 欧进萍. 方柱非定常绕流与涡激振动的数值模拟. 东南大学学报, 2005, S1: 35-39 (Xu Feng, Ou Jinping. Numerical simulation of unsteady flow around square cylinder and vortex-induced vibratio. Journal of Southeast University, 2005, S1: 35-39 (in Chinese)

    Xu Feng, Ou Jinping. Numerical simulation of unsteady flow around square cylinder and vortex-induced vibratio. Journal of Southeast University, 2005, S1: 35-39 (in Chinese)

    [59] 方平治, 顾明. 高雷诺数条件下二维方柱涡激振动的数值模拟. 同济大学学报, 2008, 2: 161-165 (Fang Pingzhi, Gu Ming. Numerical simulation of vortex-induced vibration for a square cylinder at high Reynolds mumber. Journal of Tongji University, 2008, 2: 161-165 (in Chinese)

    Fang Pingzhi, Gu Ming. Numerical simulation of vortex-induced vibration for a square cylinder at high Reynolds mumber. Journal of Tongji University, 2008, 2: 161-165 (in Chinese)

    [60]

    Andrianne T, Aryoputro RP, Laurent P, et al. Energy harvesting from different aeroelastic instabilities of a square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 164-169 doi: 10.1016/j.jweia.2017.10.031

    [61]

    Han P, Huang QG, Pan G, et al. Energy harvesting from flow-induced vibration of a low-mass square cylinder with different incidence angles. Aip Advances, 2021, 11(2): 025126 doi: 10.1063/5.0037071

    [62]

    Zhang BS, Mao ZY, Song BW, et al. Numerical investigation on effect of damping-ratio and mass-ratio on energy harnessing of a square cylinder in FIM. Energy, 2018, 144: 218-231 doi: 10.1016/j.energy.2017.11.153

    [63] 韩鹏, 潘光, 黄桥高等. 雷诺数对于方柱流致振动能量收集系统的影响. 西北工业大学学报, 2020, 38(5): 928-936 (Han Peng, Pan Guang, Huang Qiaogao, et al. The effects of Reynolds number on energy harvesting from FIV by a square cylinder. Journal of Northwestern Polytechnical University, 2020, 38(5): 928-936 (in Chinese) doi: 10.1051/jnwpu/20203850928

    Han Peng, Pan Guang, Huang Qiaogao, et al. The effects of Reynolds number on energy harvesting from FIV by a square cylinder. Journal of Northwestern Polytechnical University, 2020, 38(5): 928-936 (in Chinese) doi: 10.1051/jnwpu/20203850928

    [64]

    Zhang BS, Wang KH, Song BW, et al. Numerical investigation on the effect of the cross-sectional aspect ratio of a rectangular cylinder in FIM on hydrokinetic energy conversion. Energy, 2018, 165: 949-964 doi: 10.1016/j.energy.2018.09.138

    [65]

    Chen WL, Wei YH, Ji CN, et al. Mass ratio effects on flow-induced vibrations of an equilateral triangular prism. Journal of Fluids and Structures, 2023, 116: 103808 doi: 10.1016/j.jfluidstructs.2022.103808

    [66]

    Zhu HB, Ping H, Wang R, et al. Dynamic response of a cable with triangular cross section subject to uniform flow at Reynolds number 3900. Physics of Fluids, 2020, 32: 045103 doi: 10.1063/1.5144402

    [67]

    Park H, Mentzelopoulos AP, Bernitsas MM. Hydrokinetic energy harvesting from slow currents using flow-induced oscillations. Renewable Energy, 2023, 214: 242-254 doi: 10.1016/j.renene.2023.05.110

    [68] 张军. 正三棱柱流致振动和能量转化试验研究. [博士论文]. 天津: 天津大学, 2017 (Zhang Jun. Experimental investigation on the flow induced vibration and energy extraction of an equilateral triangle prism. [PhD Thesis]. Tianjin: Tianjin University, 2017 (in Chinese)

    Zhang Jun. Experimental investigation on the flow induced vibration and energy extraction of an equilateral triangle prism. [PhD Thesis]. Tianjin: Tianjin University, 2017 (in Chinese)

    [69]

    Zou QF, Ding L, Song T, et al. Experimental and numerical study on 2-DOF wind-induced vibration and energy harvesting of triangular prism. Ocean Engineering, 2023, 283: 114928

    [70]

    Yan X, Lian JJ, Liu F, et al. Hydrokinetic energy conversion of Flow-induced motion for triangular prism by varying magnetic flux density of generator. Energy Conversion and Management, 2021, 227: 113553 doi: 10.1016/j.enconman.2020.113553

    [71]

    Shao N, Lian JJ, Liu F, et al. Experimental investigation of flow induced motion and energy conversion for triangular prism. Energy, 2020, 194: 116865 doi: 10.1016/j.energy.2019.116865

    [72] 李恒. 不同截面形状柱体流致振动及能量转换特性. [硕士论文]. 重庆: 重庆大学, 2015 (Li Heng. The flow-induced motion and energy harvesting characteristics of a cylinder with different cross-sections. [Master Thesis]. Chongqing: Chongqing University, 2015 (in Chinese)

    Li Heng. The flow-induced motion and energy harvesting characteristics of a cylinder with different cross-sections. [Master Thesis]. Chongqing: Chongqing University, 2015 (in Chinese)

    [73]

    Barati E, Biabani M, Zarkak MR. Numerical investigation on vortex-induced vibration energy harvesting of a heated circular cylinder with various cross-sections. International Communications in Heat and Mass Transfer, 2022, 132: 105888 doi: 10.1016/j.icheatmasstransfer.2022.105888

    [74]

    Shao N, Lian JJ, Xu GB, et al. Experimental investigation of flow-induced motion and energy conversion of a T-section prism. Energies, 2018, 11(8): 2035 doi: 10.3390/en11082035

    [75] 燕翔, 练继建, 刘昉等. T形截面振子的驰振特性试验研究. 振动工程学报, 2019, 32: 431-438 (Yan Xiang, Lian Jijian, Liu Fang, et al. Experimental investigation on the galloping characteristics of the T-section prism. Journal of Vibration Engineering, 2019, 32: 431-438 (in Chinese)

    Yan Xiang, Lian Jijian, Liu Fang, et al. Experimental investigation on the galloping characteristics of the T-section prism. Journal of Vibration Engineering, 2019, 32: 431-438 (in Chinese)

    [76]

    Lian JJ, Ran DJ, Yan X, et al. Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections. Energy, 2023, 269: 126814 doi: 10.1016/j.energy.2023.126814

    [77] 冉聃颉, 练继建, 邵楠等. 圆-三角-附板振子流致振动与发电研究. 水力发电学报, 2022, 41(11): 86-95 (Ran Danjie, Lian Jijian, Shao Nan, et al. Hydrokinetic energy harvesting from flow-induced motion of circular-triangle-attachment oscillator. Journal of Hydroelectric Engineering, 2022, 41(11): 86-95 (in Chinese)

    Ran Danjie, Lian Jijian, Shao Nan, et al. Hydrokinetic energy harvesting from flow-induced motion of circular-triangle-attachment oscillator. Journal of Hydroelectric Engineering, 2022, 41(11): 86-95 (in Chinese)

    [78]

    Huang S, Herfjord K. Experimental investigation of the forces and motion responses of two interfering VIV circular cylinders at various tandem and staggered positions. Applied Ocean Research, 2013, 43: 264-273 doi: 10.1016/j.apor.2013.10.003

    [79]

    Assi GRS. Wake-induced vibration of tandem and staggered cylinders with two degrees of freedom. Journal of Fluids and Structures, 2014, 50: 340-357 doi: 10.1016/j.jfluidstructs.2014.07.002

    [80]

    Xu WH, Ma YX, Cheng AK, et al. Experimental investigation on multi-mode flow-induced vibrations of two long flexible cylinders in a tandem arrangement. International Journal of Mechanical Sciences, 2018, 135: 261-278 doi: 10.1016/j.ijmecsci.2017.11.027

    [81]

    Xu WH, Qin WQ, Yu Y. Flow-induced vibration of two identical long flexible cylinders in a staggered arrangement. International Journal of Mechanical Sciences, 2020, 180: 105637 doi: 10.1016/j.ijmecsci.2020.105637

    [82]

    Lin K, Wang JS, Zheng HX, et al. Numerical investigation of flow-induced vibrations of two cylinders in tandem arrangement with full wake interference. Physics of Fluids, 2020, 32: 015112 doi: 10.1063/1.5134984

    [83]

    Xu WH, Wu HK, Song ZY, et al. Flow-induced vibrations of two staggered cylinders with a moderate spacing and varying incident angles at subcritical Reynolds numbers. Ocean Engineering, 2022, 258: 111723 doi: 10.1016/j.oceaneng.2022.111723

    [84]

    Zdravkovich MM. Flow induced oscillations of two interfering circular cylinders. Journal of Sound and Vibration, 1985, 101(4): 511-521 doi: 10.1016/S0022-460X(85)80068-7

    [85]

    Ali U, Islam M, Kadi KE, et al. Energy harvesting from wake-induced vibrations of a downstream cylinder in tandem arrangement. Procedia Computer Science, 2023, 224: 280-287 doi: 10.1016/j.procs.2023.09.038

    [86]

    Sun H, Ma C, Kim ES, et al. Hydrokinetic energy conversion by two rough tandem-cylinders in flow-induced motions: Effect of spacing and stiffness. Renewable Energy, 2017, 107: 61-80 doi: 10.1016/j.renene.2017.01.043

    [87]

    Xu WH, Ji CN, Sun H, et al. Flow-induced vibration and hydrokinetic power conversion of two staggered rough cylinders for 2.5 × 104 < Re < 1.2 × 105. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021905 doi: 10.1115/1.4038932

    [88]

    Ding WJ, Sun H, Xu WH, et al. Numerical investigation on interactive FIO of two-tandem cylinders for hydrokinetic energy harnessing. Ocean Engineering, 2019, 187: 106215 doi: 10.1016/j.oceaneng.2019.106215

    [89]

    Sun H, Li HJ, Yang NK, et al. Experimental and numerical study of the shielding effect of two tandem rough cylinders in flow-induce oscillation. Marine Structures, 2023, 89: 103374 doi: 10.1016/j.marstruc.2023.103374

    [90]

    Sun H, Bernitsas MM, Turkol M. Adaptive harnessing damping in hydrokinetic energy conversion by two rough tandem-cylinders using flow-induced vibrations. Renewable Energy, 2020, 149: 828-860 doi: 10.1016/j.renene.2019.12.076

    [91]

    Zhang BS, Li BY, Li CP, et al. Effects of variable damping on hydrokinetic energy conversion of a cylinder using wake-induced vibration. Renewable Energy, 2023, 213: 176-194 doi: 10.1016/j.renene.2023.06.004

    [92]

    Chen ZL, Alam MM, Qin B, et al. Energy harvesting from and vibration response of different diameter cylinders. Applied Energy, 2020, 278: 115737 doi: 10.1016/j.apenergy.2020.115737

    [93]

    Bai X, Chen Y, Sun H, et al. Numerical study on ocean current energy converter by tandem cylinder with different diameter using flow-induced vibration. Ocean Engineering, 2022, 257: 111539 doi: 10.1016/j.oceaneng.2022.111539

    [94]

    Tang RJ, Gu YB, Mi XW, et al. Numerical analysis of WIV phenomenon with two in-series cylinders: WIV suppression and energy harvesting. Ocean Engineering, 2022, 262: 112154 doi: 10.1016/j.oceaneng.2022.112154

    [95]

    Ding L, Zou QF, Zhang L, et al. Research on flow-induced vibration and energy harvesting of three circular cylinders with roughness strips in tandem. Energies, 2018, 11: 2977 doi: 10.3390/en11112977

    [96]

    Han P, Pan G, Zhang BS, et al. Three-cylinder oscillator under flow Flow induced vibration and energy harvesting. Ocean Engineering, 2020, 211: 107619 doi: 10.1016/j.oceaneng.2020.107619

    [97]

    Wang JL, Su Z, Li H, et al. Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations. Ocean Engineering, 2020, 208: 107455 doi: 10.1016/j.oceaneng.2020.107455

    [98]

    Rabiee AH, Esmaeili M. Effect of the flow incidence angle on the VIV-based energy harvesting from triple oscillating cylinders. Sustainable Energy Technologies and Assessments, 2023, 57: 103312 doi: 10.1016/j.seta.2023.103312

    [99] 罗竹梅, 张立翔, 张晓旭等. 涡激振动驱动的柱群结构俘获海流能的稳定性分析. 振动与冲击, 2019, 38(8): 96-116 (Luo Zhumei, Zhang Lixiang, Zhang Xiaoxu, et al. Stability analysis of harvesting ocean current energy for a multi-cylinder structure driven by VIV. Journal of Vibration and Shock, 2019, 38(8): 96-116 (in Chinese)

    Luo Zhumei, Zhang Lixiang, Zhang Xiaoxu, et al. Stability analysis of harvesting ocean current energy for a multi-cylinder structure driven by VIV. Journal of Vibration and Shock, 2019, 38(8): 96-116 (in Chinese)

    [100] 罗竹梅, 聂耳, 郭涛. 涡激振动驱动的柱群结构集中俘获海流能研究. 太阳能学报, 2021, 42(4): 89-94 (Luo Zhumei, Nie Er, Guo Tao. Study on centralized harvesting ocean current energy with column-group structure by VIV. Acta Energiae Solaris Sinica, 2021, 42(4): 89-94 (in Chinese)

    Luo Zhumei, Nie Er, Guo Tao. Study on centralized harvesting ocean current energy with column-group structure by VIV. Acta Energiae Solaris Sinica, 2021, 42(4): 89-94 (in Chinese)

    [101]

    Zhang BS, Mao ZY, Song BW. Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation. Ocean Engineering, 2018, 165: 55-68 doi: 10.1016/j.oceaneng.2018.07.042

    [102]

    Kim ES, Bernitsas MM. Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion. Applied Energy, 2016, 170: 92-100 doi: 10.1016/j.apenergy.2016.02.116

    [103] 邵楠. 双三棱柱流致振动特性及发电振子布局优选试验研究. [博士论文]. 天津: 天津大学, 2020 (Shao Nan. Experimental study on flow induced motion characteristics and energy conversion optimal layout for two triangular prisms. [Phd Thesis]. Tianjin: Tianjin University, 2020 (in Chinese)

    Shao Nan. Experimental study on flow induced motion characteristics and energy conversion optimal layout for two triangular prisms. [Phd Thesis]. Tianjin: Tianjin University, 2020 (in Chinese)

    [104]

    Shao N, Lian JJ, Yan X, et al. Experimental study on energy conversion of flow induced motion for two triangular prisms in staggered arrangement. Energy, 2022, 249: 123764 doi: 10.1016/j.energy.2022.123764

    [105]

    Tamimi V, Esfehani MJ, Zeinoddini M, et al. Marine hydrokinetic energy harvesting performance of diamond and square oscillators in tandem arrangements. Energy, 2020, 202: 117749 doi: 10.1016/j.energy.2020.117749

    [106]

    Tamimi V, Esfehani MJ, Zeinoddini M, et al. Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes. Energy, 2023, 263: 125982 doi: 10.1016/j.energy.2022.125982

    [107]

    Shao N, Xu GB, Liu F, et al. Experimental study on the flow-induced motion and hydrokinetic energy of two T-section prisms in tandem arrangement. Applied Sciences, 2020, 10(3): 1136 doi: 10.3390/app10031136

    [108]

    Liu JL, Bao B, Chen JT, et al. Marine energy harvesting from tidal currents and offshore winds: A 2-DOF system based on flow-induced vibrations. Nano Energy, 2023, 114: 108664 doi: 10.1016/j.nanoen.2023.108664

    [109]

    Tamimi V, Wu J, Naeeni STO, et al. Effects of dissimilar wakes on energy harvesting of flow induced vibration (FIV) based converters with circular oscillator. Applied Energy, 2021, 281: 116092 doi: 10.1016/j.apenergy.2020.116092

  • 期刊类型引用(1)

    1. 瞿怡鹏,孙秀婷,徐鉴. 仿鸡脖子刚柔耦合结构的仿生机理及大变形建模. 力学学报. 2023(02): 445-461 . 本站查看

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  44
  • PDF下载量:  100
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-11-21
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-01-15
  • 发布日期:  2024-01-16
  • 刊出日期:  2024-03-17

目录

/

返回文章
返回