DYNAMICAL REGULATION METHOD OF MECHANICAL ENERGY HARVESTING
-
摘要: 机械能量采集是将环境中分散和无序的低品质高熵机械能转换为电能, 可以为广泛分布的传感器等低功耗电子器件供电实现自供能物联网, 具有灵活、便捷、可持续和零碳环保的优势, 能够广泛应用于生态环境监测、基础设施健康状态监测和设备状态监测等, 是国际前沿研究热点. 但是, 目前机械能量采集存在输出功率低、工作频带窄、低频效果差、环境适应性差和可靠性低等制约其实际应用的关键难题. 机械能量采集动力学调控方法能够改善机械能量采集系统的动力学性能, 使其与特定的环境激励相匹配, 提升系统的输出电学性能. 文章构建了机械能量采集动力学调控方法体系, 包括激励调制、非线性系统、多自由度系统、自适应控制和策略调控等方法; 论述了动力学调控方法的最新研究进展, 包括每类动力学调控方法的特点和典型设计; 最后, 总结了动力学调控方法的关键挑战, 并预测了未来发展方向. 为机械能量采集系统适应复杂环境激励提供了新的动力学调控视角, 有益于促进机械能量采集理论与技术的发展.Abstract: Mechanical energy harvesting is a process of converting the scattered, disordered, low-quality, and high entropy mechanical energy from the environment into electrical energy. It enables self-powered IoT by powering low-power electronic devices such as widely distributed sensors. Mechanical energy harvesting exhibits the merits of flexible, convenient, sustainable, zero carbon, and environmental-friendly. It has become an international frontier research hotspot and can be widely applied in natural environment monitoring, infrastructure condition monitoring, equipment condition monitoring, etc. However, key issues are restricting the practical application of mechanical energy harvesting, such as low output power, narrow working frequency band, poor low-frequency effect, poor environmental adaptability, and low reliability. The dynamic regulation method for mechanical energy harvesting has the potential to enhance the performance of such systems by tailoring them to specific environmental stimuli and improving their output electrical performance. This paper constructs a dynamic regulation methodology system including excitation regulation, nonlinear systems, multi-degree of freedom systems, adaptive control and strategy regulation. The latest advancements in dynamic regulation methods has been discussed, including the characteristics and typical designs of each type of dynamic regulation method. Finally, the main challenges faced by dynamic regulation methods were summarized and the development trends were discussed. This paper provides a new perspective for adaptive dynamic regulation of mechanical energy harvesting systems in complex environments, which is beneficial for promoting the development of mechanical energy harvesting theory and technology.
-
Keywords:
- dynamic regulation /
- energy harvesting /
- mechanical energy /
- self-powered technology
-
引 言
物联网技术的飞速发展, 有望实现人与人、人与物、物与物之间的连接互通, 为创建智能化世界奠定基础[1-2]. 传感器作为物联网的“神经末梢”, 是感知外界的基础元件, 如何对广泛分布的传感器长期有效供能是传感器网络发展的瓶颈问题之一. 目前, 大多数传感器依靠化学电池供电, 化学电池会产生环境污染且使用寿命有限. 并且, 传感器数量庞大、分布范围广, 更换电池困难, 有些传感器布置在特殊环境难以维护. 另一方面, 随着新型材料、微纳制造和集成电路等技术的迅速发展, 微电子器件的能耗显著降低. 因此, 能量采集技术应运而生, 即采集自然界中广泛存在的分布式、无序式、低品质的高熵能源并转换为电能, 为广泛分布的低功耗传感器供能, 是有效解决物联网供能问题的有效途径之一[3-6].
机械能量是环境中最普遍存在的能量之一, 如风、波浪、高精尖设备运行、车辆行驶、人体运动和机械振动等等. 然而, 环境中的机械能具有分布范围广, 激励形式复杂, 激励方向多变, 激励频率低、频域宽等特点. 机械能量采集系统难以直接俘获环境激励, 且机电能量转换效率低, 输出功率小, 无法满足合理、高效、持续、稳定地提供电能的实际应用需求[7-8]. 因此, 需要对机械能量采集系统进行合理的动力学设计和调控, 使其与特定的环境激励相匹配, 提升机械能量采集系统动力学性能, 进而俘获更多的机械能并提高机电转换效率和输出电学性能.
针对物联网技术的可持续能源供应需求, 近年来机械能量采集技术蓬勃发展, 成为了国际热点研究方向. 众多研究表明非线性系统、频率提升、机械整流和磁力耦合等方法与技术能够提升系统的综合性能[9-13]. 但这些研究各自孤立, 从方法论层面对这些方法与技术进行归纳总结的论文较少. 为此, 本文从动力学调控的角度解析了现有机械能量采集性能提升方法和技术[14-17], 如图1所示, 构建了包括激励调制、非线性系统、多自由度系统、自适应控制和策略调控等方法的动力学调控方法体系, 论述了动力学调控方法的典型设计, 展望了动力学调控方法的发展趋势与未来前景.
1. 激励调制
环境中机械能的激励形式复杂多变, 难以直接进行机电能量转换. 例如: 人体运动和设备微振动的激励是微弱的, 机电换能器难以有效工作; 波浪和人体运动是超低频的、不规则的, 航空发动机转子转动是超高频的, 难以与机电换能器的谐振频率匹配; 碰撞、冲击激励过强会破坏机电换能器; 恶劣自然环境、复杂工业环境会降低机电换能器的可靠性和机电转换效率. 因此, 需要根据不同的能量来源进行激励调制, 再将合理的激励输入到机电换能器进行机电转换. 通过调制后的外激励具有规律、灵活可控的特点, 使得机电换能器更容易采集低品质高熵能源, 提高机电能量转换效率. 激励调制方法是能量源与机电换能器之间的关键纽带, 主要分为3类: 激励形式转换、激励频率提升和激励力放大.
1.1 激励形式转换
风和水流等流体能量难以直接激励机电换能器, 通常需要将流体的流动转换为振动、旋转运动或滚动运动, 再激励机电换能器进而产生电能. 流体运动转换为机械运动的典型动力学调控能量采集系统如图2所示. 旋转式流体能采集系统通过叶片等机械结构, 将风能和水流能等流速、方向、大小不稳定的激励转换为旋转运动, 再基于机电换能器而发电[18-20]. 如图2(a)所示, 水流先驱动水轮机产生旋转激励, 再带动多层栅盘结构摩擦纳米发电机(triboelectric nanogenerator, TENG)进行旋转能量采集. 多层栅盘结构的TENG采用D形轴与水轮机连接, 可以使多层盘同步相对旋转, 实现结构集成和倍增输出[21]. 流体能量也可以先调制成旋转运动再转换为压电梁振动而产生电能[22-23]. 此外, 基于空气动力学的流致振动能量采集系统可以将流体能量转换为振动而发电, 主要分为颤振、涡激振动、驰振和尾流驰振等形式. 如图2(b)所示, Wang等[24]提出了一种涡激振动与驰振相互转换的压电风能采集器, 阻流体上附加Y形结构可以基于驰振模式进行风能采集, 而将Y形结构去除时可以基于涡激振动进行能量转换. 如图2(c)所示, Wang等[25]报道了一种基于颤振实现两种摩擦电材料之间的周期性接触和分离的TENG, 该装置体积小, 最大输出功率密度为9 kW/m3, 能够采集人体呼吸能量. 此外, 流体能量也可以同时转换为多种形式的机械运动, 利用不同激励特征灵活地设计合适的机电换能器而满足多种应用需求[26]. 在图2(d)中, Ye等[27]设计了一个摩擦−电磁复合式风能采集系统, 能够将风能同时转换为振动与旋转运动, 分别利用TENG在中低风速激励下高性能和EMH在高风速下高性能的特点, 实现了宽转速范围的风能采集与自供能风速传感.
图 2 流体运动转换为机械运动的典型动力学调控能量采集系统: (a)水流能转换为旋转运动[20], (b)风能转换为振动(驰振)[24], (c)风能转换为振动(颤振)[25], (d)风能转换为旋转和振动[27]Figure 2. Typical dynamic regulation energy harvesting systems for converting fluid motion into mechanical motion: (a) convert water flow energy into rotary motion[20], (b) convert wind energy into vibration (galloping)[24], (c) convert wind energy into vibration (flutter)[25], (d) convert wind energy into rotation and vibration[27]环境中大多数激励是不可控的, 如果直接作用到换能器上, 难以与机电换能器匹配, 严重时, 不可控的激励会损坏换能器. 因此, 需要将环境中不可控的运动形式转换为可控的作用力, 再传递到机电换能器上, 使激励与换能器的匹配灵活可控. 压电悬臂梁是最常见的一种压电式能量采集系统, 但是陶瓷压电材料在压力下易损坏, 因此可以将压电悬臂梁的振动转换为可控的作用力, 再传递到压电陶瓷上, 有利于机电转换的可控性, 也能提升系统的可靠性. 如图3(a)为一种杠铃式压电堆叠振动能量采集系统, 将多层环形压电陶瓷套在一根弹性钢轴上, 再通过法兰盘和环形螺母将压电堆预压缩[28]. 这种结构可以将振动转换为作用在压电堆上的拉力或压力, 避免了压电材料损坏失效问题. 图3(b)展示了一种能够收集车路冲击载荷的压电能量采集系统, 装置的两端耦合两个两端固支的非线性弹性梁, 中间放置多层PZT堆叠, 车辆行驶产生的动态载荷垂直作用在梁的中部, 然后将作用力转换成水平压缩力作用到PZT堆叠上[29-30]. 类似地, 金属钹形结构不仅可以将装置受到的冲击力转换为垂直作用到压电材料上的可控力, 还可以提升压电换能器的机电转换效率[31-32]. 磁力作为一种非接触能量传递方式可以将环境中不规则、不可控的激励转换为可控的激励, 再作用到机电换能器上. 如图3(b), 这种方式不仅可以使作用在压电材料上的作用力更加可控, 也可以使压电材料受力更加均匀, 有利于机电能量转换[33].
图 3 不可控运动形式转换为可控作用力的典型动力学调控能量采集系统: (a)杠铃式压电堆叠振动能量采集系统[28], (b)抗冲击式压电能量采集系统[30], (c)磁力耦合钹形振动能量采集系统[33]Figure 3. Typical dynamic regulation energy harvesting systems for converting uncontrollable motion forms into controllable forces: (a) barbell-shaped piezoelectric stacking vibration energy harvesting system[28], (b) impact resistant piezoelectric energy harvesting system[30], (c) magnetic coupling cymbal unit vibration energy harvesting system[33]往复运动也是一种常见的激励形式, 如波浪波动、人体脚踏运动和车辆悬架振动等等. 这些激励形式具有频率低, 不规则, 行程大的特点, 不利于机电能量转换, 并且往复运动在换向时也会造成能量损耗. 因此, 可以将往复运动转换成转动或滚动, 再作用到机电换能器上, 既可以使激励更加规律又可以避免换向造成的能量损耗. 在机械传动机构中, 齿轮齿条、棘轮、飞轮、锥形齿轮和单向轴承的配合使用, 能够方便地将往复运动转换为旋转运动. 如图4(a)所示, Ali等[34]采用桶形凸轮机构将汽车悬架中大幅不规则往复运动转换成双向旋转运动, 再通过变速器将双向旋转运动转换为单向旋转运动而基于电磁感应发电. 在图4(b)中, Cho等[35-36]对齿轮组进行了合理设计, 能够将人体自然行走中的双向运动转换成工作轮的单向高速旋转运动, 并且同时提升了激励频率, 极大地提升了器件的输出功率, 能够为可穿戴设备供能. 在图4(c)中, 波浪整流器通过两个单向轴承和一个齿轮齿条结构将往复波浪运动转化为发电机的单向旋转运动[37]. 类似地, Mi等[38]提出了一种基于半波机械整流方法的悬挂式能量采集背包, 将人体脚踏的往复运动转换为单向旋转, 基于电磁感应而产生电能, 在运动速度为4.8 km/h时, 装置的功率密度为0.4 W/kg. 在图4(d)中, 不规则的往复运动也可以转换为滚珠的滚动运动, 对机电换能器进行单向可控稳定的激励, 不仅有助于机械整流, 也能够起到减振的效果, 提高器件的可靠性[39].
图 4 往复运动转换为旋转/滚动运动的典型动力学调控能量采集系统: (a)往复运动转换为双向旋转[34], (b), (c)往复运动转换为单向旋转[36-37], (d)往复运动转换为滚压运动[39]Figure 4. Typical dynamic regulation energy harvesting systems for converting reciprocating motion into rotation/rolling: (a) convert reciprocating motion into bidirectional rotation[34], (b) and (c) convert reciprocating motion into unidirectional rotation[36-37], (d) convert reciprocating motion to rolling-depression motion[39]为了更好地利用压电悬臂梁的特性, 可以将旋转/滚动激励转换为振动, 基于压电效应而产生电能. 如图5(a)所示, 旋转轴线平行于地面的转子系统可以将旋转运动通过悬臂梁末端质量块受到的重力而转换为压电悬臂梁的振动, 重力在旋转运动中可视为一个周期性的激励力[40]. 在重力的基础上引入磁力可以进一步拓宽系统的工作频域和输出功率[41]. 对于旋转轴线与地面垂直的转子系统, 由于没有重力作为周期性的外激励, 可以通过磁力、拨动力、冲击力和碰撞力等外激励将旋转运动转换为振动[42-43]. 在这几种外激励中, 可以通过阵列的方式提升激励频率, 其中磁力属于非接触力, 设计灵活, 能够减少阻尼和能量损耗. 如图5(b)所示, Fu等[44]设计了一种水平双稳态旋转能量采集系统, 旋转磁体提供周期性外激励, 使得静止的悬臂梁产生振动, 固定的磁体与悬臂梁末端磁体产生排斥力, 从而引入双稳态系统, 能够进一步拓宽工作频域. 如图5(c)所示, Chen等[45]设计了一种圆柱状摩擦−电磁复合式能量采集系统, 将旋转运动转换为磁棒的滚动运动再激励阵列的TENG单元振动, 基于接触分离模式发电. 这种方式不仅方便集成电磁和摩擦两种机电转换机制, 还能使TENG单元的受力更加均匀, 提高了系统的可靠性. 如图5(d)所示, He等[46]设计了旋转拨片式压电梁结构, 通过动量轮旋转过程中拨片拨动压电梁使其振动而发电, 通过合理匹配拨片和压电悬臂梁的位置能够进一步提升输出功率.
图 5 旋转/滚动运动转换为振动的典型动力学调控能量采集系统: (a)利用重力将旋转运动转换为振动[40], (b)利用磁力将旋转运动转换为振动[44], (c)滚动转换为振动[45], (d)利用拨动力将旋转运动转换为振动[46]Figure 5. Typical dynamic regulation energy harvesting systems for converting rotation/rolling into vibration: (a) convert rotation into vibration by gravity[40], (b) convert rotation into vibration by magnetic force[44], (c) convert rolling into vibration[45], (d) convert rotation motion into vibration by plucking force[46]1.2 激励频率提升
自然环境中大部分能量源的频率都比较低, 而大多数机电换能器需要在较高的频率下才能有效工作, 并且高频激励可以极大地提升系统的电学输出性能. 齿轮组、齿轮齿条等机械结构配合使用可以提升旋转运动的转速(频率), 并且机械机构稳定可靠, 可以根据应用需求方便地控制激励提升的倍数. 如图6(a)所示, Donelan等[47]开发了一种生物力学能量采集器, 类似于汽车中的制动系统, 器件帮助人体肌肉做负功, 将人走路时脚落地制动过程中消耗的能量采集起来, 驱动具有齿轮升频结构电磁发电机发电. Rome等[48]设计了一种悬浮负载背包, 将人体行走过程中承载负载垂直运动产生的机械能转化为电能, 通过齿轮与齿条组的组合升频机构将人体激励提升频率, 驱动电磁能量采集系统产生电能. 利用两种结构相互耦合的作用也可以进行激励频率的提升, 即一个低频机构(主系统)和一个高频机构(辅助系统)组成, 可以通过自由移动质量、机械拨动、磁力拨动或机械冲击将低频机构被外激励产生的低频振动转换为高频机构的高频振动[49]. 如图6(b)所示, Pozzi等[50]设计了一种机械拨动式升频人体运动能量采集系统, 人体运动激励拨片拨动压电双晶梁, 然后快速释放压电双晶梁, 使其能够不受阻碍地振动, 实现了激励频率的提升, 并且圆周阵列拨片和压电双晶梁可以在人体膝关节运动时连续进行激励. 如图6(c)所示, Fan等[51]提出了一种压电−电磁复合式能量采集系统, 利用球形磁体双向碰撞弹簧在线圈内进行电磁发电, 同时球的碰撞力激发压电梁的高频振动, 实现了升频激励. 齿轮齿条之间的摩擦会产生较大的阻尼, 机械拨动或碰撞也会产生阻尼, 不利于弱激励能量采集, 因此可以采用无接触磁力升频机制. 磁力齿轮是成熟的机构, 可以直接用于激励频率提升, 并且也可以进一步优化磁场排布, 提升电磁感应的电学输出效果[52]. 如图6(d)所示, Cai等[53]提出了磁增频转换器替换传统的齿轮机构, 当所有磁铁的极对数等于铁磁块的数量时, 磁增频转换器可以有效地提升频率, 而不会产生机械摩擦. 此外, 磁力阵列方式类似于齿轮机构, 通过无接触方式进行激励频率的提升[54]. 栅盘式结构是TENG中最典型的结构之一, 可以提升激励频率, 由于旋转栅盘能够不间断地诱导电荷转移, 有助于提升系统输出功率, 并且加工方便, 可以多层叠加, 有利于减小空间[55]. 如图6(e)所示, Bai等[56]对栅盘式结构进行了表面改性并且串联了多层栅盘, 采用摆动质量块驱动栅盘, 将低频波浪转化为高频电输出. 此外, 栅盘式结构也方便集成电磁单元, 可以在同一个旋转运动下同时激励摩擦纳米发电机和电磁能量采集系统, 同时实现高压电和高电流的电学输出, 方便满足不同的应用需求[57].
图 6 激励频率提升的典型动力学调控能量采集系统: (a)齿轮组升频机制[47], (b)机械拨动升频机制[50], (c)机械碰撞升频机制[51], (d)磁增频转换器机制[53], (e)栅盘式结构升频机制[56]Figure 6. Typical dynamic regulation energy harvesting systems using excitation frequency-up conversion: (a) gear set frequency-up mechanism[47], (b) mechanical plucking frequency-up mechanism[50], (c) mechanical collision frequency-up mechanism[51], (d) magnetic frequency-up converter mechanism[53], (e) segmentally structured disk frequency-up mechanism[56]1.3 激励力放大
压电材料需要合适的外力使其产生形变而产生电能, 在合理范围内, 压电材料的应变越大, 其产生的电能越大. 因此, 需要对激励力进行放大, 提高压电能量采集系统的电学输出性能. 但是, 压电纤维和压电陶瓷在过大的外力激励下会损坏, 难以保证器件的可靠性, 因此需要进行合理的动力学调控设计, 既能放大作用在压电材料上的力, 又能够保证其可靠性. 弯张放大结构包括两侧对称的弯张型金属层和中心的压电层, 外激励力通过弯张型金属层的转换和放大作用, 将径向力转换为放大的轴向力, 不同方式布置的压电层等效压电系数能够放大数十至上百倍. 此外, 弯张型金属层也可以使压电材料的受力更加均匀, 极大地提升了压电陶瓷的机械耐受度和鲁棒性.
典型的弯张放大结构包括: 钹型结构、桥型结构和多层桥型结构等[58-60]. 如图7(a)所示, Qian等[61]将压电堆引入到弯张放大结构中, 进一步提升了每个弯张换能器的输出功率. 并且将器件阵列集成在鞋跟处, 可以采集人体行走时的能量, 在行走速度为5.6 km/h时, 能够产生20 mW的平均功率. 进一步, 两极放大柔顺结构用于人体运动能量采集, 能够进一步优化弯张结构的输出性能[62]. 如图7(b)所示, Wu等[63]设计了一种基于弯张结构的两级力放大压电能量采集器, 将两级弯张结构与锥形传动机构和滑动导向机构集成, 能够在两个垂直方向的激励下均产生力放大效果.
弯张结构不仅适用于高负载、强激励环境, 还可以通过动力学调控设计用于弱激励环境中. 如图7(c)所示, Yang等[64-67]提出了一种高效压缩模式压电能量采集器. 器件由一对弹性梁、一对质量块和一个弯张压电单元组成. 基础激励被质量块和弯张单元的中心作为惯性力吸收, 惯性力被弹性梁放大为沿弹性梁的轴向力, 最后轴向力被弯张单元放大, 作用在压电材料上产生电能. 高效压缩模式压电能量采集器能够采集低频振动、旋转运动的能量, 具有广泛的应用价值[68-69]. 此外, Li等[70-72]利用桁架、铰链、弹簧等机械结构进一步对弯张结构进行优化设计, 提高其电学输出效果.
杠杆结构可以放大位移, 也可以对激励力产生放大作用. 如图7(d)所示, Hua等[73]利用杠杆结构放大人踏步时产生的位移, 充分利用了人体的重量和踏地时的冲击力, 放大了压电材料的形变, 在2.3 Hz的激励下能够产生13.60 mW的平均功率. Zhang等[74]设计了一种具有弹性储能和位移放大功能的柔性杠杆结构, 在人体步进和回弹过程中, 线圈铁芯中的磁感应方向改变两次, 从而将冲击负载部分转换为电能. Yang等[75-76]提出了一种利用杠杆机构的新型双稳态能量采集器, 放大了磁体和线圈的相对位移, 显著地提升了输出功率.
图 7 激励力放大的典型动力学调控能量采集系统: (a)压电堆弯张放大结构[61], (b)双向两级放大型弯张结构[63], (c)高效压缩模式压电能量采集器[65], (d)杠杆原理用于激励力放大[73]Figure 7. Typical dynamic regulation energy harvesting systems using excitation force amplification: (a) piezoelectric stack flextensional structure[61], (b) two-directional two-stage amplified flextensional structure[63], (c) high efficiency compression mode energy harvester[65], (d) lever mechanism for excitation force amplification[73]2. 非线性系统
环境中大部分的能量源是分布在很宽的频域上, 且低频成分占据主导地位, 传统线性能量采集系统只能在谐振频率附近产生较大振幅的振动, 实现有效的功率输出, 难以实时匹配环境中的宽频振动, 制约了机械能量采集系统的发展. 非线性能量采集系统具有较宽的谐振频域, 拓宽了系统的有效工作频域范围, 且系统的动力学特性可以灵活设计、方便调控, 能够匹配不同的环境激励, 满足多样化的应用需求[77]. 近年来, 非线性能量采集系统被广泛研究, 按照动力学调控方法对其进行分类, 主要分为3种类型: 非线性磁力调控、基于内共振原理调控和几何非线性调控.
2.1 非线性磁力调控
磁力是典型的非线性力, 合理设计空间磁场的配置可以利用磁力对能量采集系统的动力学特性进行调控, 使其具有较宽的有效工作频域. 并且, 磁力是一种非接触力, 磁体的磁力大小也可以通过磁体大小、距离远近和磁体材质等方便地调整, 能够更加方便和灵活地进行设计与加工. 2009年, Cottone等[77]和Erturk等[78]报道了一种带有末端磁体的压电悬臂梁, 用于非线性振动能量采集, 具有良好的宽频特性. 利用非线性磁力可以方便地构造双稳态、多稳态系统, 系统能够在不同稳态点之间实现大幅度阱间跳跃, 在宽频域范围内实现大振幅振动, 有效提高了系统的动力学响应和电学性能[79]. 研究表明, 在单稳态与双稳态之间的临界区域, 系统的动力学特性最佳, 更容易被激励而产生较大振幅的振动[80-81].
图8(a)展示了一种磁耦合非线性压电能量采集器, 改变外部磁体的角度, 器件在不同频率范围内表现出双稳态或单稳态特性, 能够在4 ~ 22 Hz频率范围内有效工作[82]. 进一步, Zhou等[83-84]提出了非线性三稳态系统, 与具有更深势阱的双稳态非线性能量采集器相比, 带有末端质量的悬臂梁在三稳态系统中更容易通过势能阱, 从而在更宽的频域内产生高电能输出. 如图8(b)所示, Tang等[85]利用磁斥力实现非接触式升频调控, 避免了机械碰撞和磨损, 延长了器件的使用寿命, 且系统在1 g加速度激励下, 能够在10 ~ 22 Hz的宽频率范围内有效工作. 在图8(c)中, Wang等[86]提出了一种紧凑型多稳态复合式人体运动能量采集系统, 磁体既可以提供非线性力又作为电磁单元的组成模块, 低频振动的位移行程和机械能量传递过程几乎可以完全重叠, 从而放大低频宽带振源下的功率输出. 在旋转运动中非线性磁力可以与离心力耦合, 进一步对系统动力学特性进行调控, 提高能量采集系统的输出功率[6]. Zhang等[87]提出了一种双稳态旋转压电能量采集系统, 非线性磁力使得系统呈现双稳态, 由于旋转过程中的离心效应, 双稳态可以转化为单稳态, 双稳态系统的高能轨道振荡能够提供足够的动能使系统在单稳态保持稳定的振动, 进一步拓宽系统运行频率范围. 如图8(d)所示, Mei等[88]提出了一种四稳态压电能量采集器用于超转速下旋转运动, 系统结合低势垒和时变势阱的优点能够在转速为60 ~ 420 r/min的范围内有效工作.
2.2 基于内共振原理调控
内共振是指系统中不同自由度之间的相互作用导致某些特定频率下的放大效应. 在非线性内共振系统中, 相互作用的自由度之间由于非线性关系而产生耦合效应, 使得系统在某些频率上具有突出的能量响应. 非线性内共振系统是多自由度系统的一种特殊情况, 但其独特之处在于非线性关系导致的内共振现象, 因此将非线性内共振系统在本章论述. 内共振能够调控系统动力学特性, 提升振动能量采集的效果. Chen等[89-91]首次提出了基于内共振原理的振动能量采集系统, 如图9(a)所示, 两个非线性模态相互耦合并进行能量交换, 相互激励均能产生主共振峰, 可以提高振动能量采集系统的有效工作频宽. 在宽频激励下基于内共振原理的系统性能优于具有相同固有频率和相同尺寸的线性能量采集系统. Aravindan等[92]分析了1:3内共振压电悬臂梁在简谐激励下的非线性动力学和能量采集性能, 发现了能量在模态之间的转移只发生在激励的某个阈值内, 而该阈值反过来又会影响俘获能量的大小. 如图9(b)所示, Xie等[93]设计了一种T型压电能量采集器, 当激励频率接近系统的第一共振频率时, 会出现1:3的内共振现象, 通过低频激励下的高频响应, 可以显著提高能量转换效率. 同时, 系统在第一阶共振带宽内非线性响应增强, 工作带宽变宽. Xu等[94-95]将单线摆连接于压电悬臂梁自由端, 利用三维空间中摆锤运动与梁的弯曲模态之间的非线性耦合产生1:2的内共振, 从而实现单悬臂梁的多方向能量收集. 在此基础上, Bao等[96]提出了一种压电悬臂梁−非线性磁摆结构用于采集多方向振动能量, 引入了非线性磁力调控悬臂摆系统的内部共振, 如图9(c)所示. 系统在x方向的内共振带宽是传统压电悬臂摆系统的3倍, 在7.5 Hz激励下的最大功率为0.64 mW. 同时, 系统在z方向还实现了额外的谐振频域(3.4 ~ 4.3 Hz), 以改善z方向能量采集性能.
2.3 非线性几何结构调控
非线性几何结构可以方便地使能量采集系统产生非线性特征, 且不需要引入额外的机构, 装置更加小型化, 有利于集成设计. 最常见的非线性几何结构是通过多个弹簧结构的设计形成双稳态或多稳态系统, 装置在稳态点之间的大幅度跳动有助于提升能量采集系统的功率输出[97-98]. 此外, 还可以通过非线性刚度的参数设计将系统优化为准零刚度系统, 在双稳态和单稳态的过渡区域更容易被激励, 有利于在低频环境中收集到更多的能量[99](图10(a)), 也可以用于减振−能采一体化设计[100-101]. 如图10(b), Li等[102]设计了X型结构, 将双稳态和准零刚度结合, 适用于低频弱激励的波浪能采集. 此外, 还可以通过设计不同的结构来调整几何非线性刚度, 从而对系统的动力学特性进行调控, 如U型梁[103], H型梁[104]等. 如图10(c), Paul等[105]采用FR4材料设计成的锥形弹簧结构进行振动能量采集, 锥形弹簧的非典型应力分布引起的非线性恢复力有助于拓宽系统的有效工作频宽, 并且可以通过调整结构的锥度更加方便地调控系统的非线性特征. 在图10(d)中, Dhote等[106-107]设计了一种多稳态正交平面柔顺机构用于非线性振动能量采集系统, 将几何非线性与磁力非线性进行耦合, 共同调控系统的非线性刚度, 提高了系统的输出电压和工作带宽, 减小了不同振动模态之间的间隙, 使振动模态更加接近. 屈曲梁是一种常见的几何非线性结构, 可以设计成天然的几何双稳态结构, 不需要额外的机械结构, 能够在外激励下在两个稳态点之间跳动, 有利于提高能量采集系统的电学输出[108]. 如图10(e), Jung等[109]提出了一种非线性振动能量采集系统, 由两个预弯曲的细长型屈曲梁和桥中心的压电悬臂梁组成, 当系统受到高于临界加速度值的低频振动时, 屈曲梁在两个平衡点之间快速大幅度跳动, 为桥中心的压电悬臂梁提供高加速度, 从而使其在高频下共振. 此外, 屈曲结构也可以进一步拓展为折纸结构、超材料等等, 利用其独特的双稳态突跳特性进行能量采集−振动控制一体化设计[110]. 利用弹性止动模块调整悬臂梁的振动位移也可以使系统具有非线性特征. 如图10(f), Machado等[111]提出了一种低频旋转压电能量收集器, 利用弹簧作为柔性止动件限制梁的振动位移, 且接触力在最低旋转频率时最大, 有助于低转速时的能量采集. Fang等[112]在柔性止动梁上黏贴压电材料, 利用离心软化效应, 可以放大驱动梁和止动梁之间的相对运动, 增加冲击力, 从而显著提高输出功率.
图 10 基于非线性几何结构的典型动力学调控能量采集系统: (a) 三弹簧双稳态准零刚度系统[99], (b) X型结构[102], (c) 锥形弹簧系统[105], (d) 多稳态正交平面柔顺机构[106], (e) 屈曲梁系统[109], (f) 柔性边界系统[111]Figure 10. Typical dynamic regulation energy harvesting systems based on nonlinear geometry: (a) three spring bistable quasi-zero-stiffness system[99], (b) X-shaped structure[102], (c) tapered spring system[105], (d) multistable compliant orthoplanar spring mechanism[106], (e) buckling beam system[109], (f) flexible stopper system[111]3. 多自由度系统
多自由度系统可通过单自由度系统的阵列形成, 能够成倍地提升系统的输出功率, 但是同时也增加了系统的复杂性, 需要提升加工方法才能更好地发挥系统的优势. 此外, 也可以设计具有耦合作用的多自由度系统, 能够单向或双向提升系统的动力学特性, 有助于最终提升能量采集输出性能. 按照动力学调控方法对其进行分类, 主要分为两种类型: 阵列结构和耦合系统.
3.1 阵列结构
阵列结构能够方便地形成多自由度系统, 在同一激励下完成多个子单元的能量采集, 将能量存储在电容器中, 有助于提升系统的电学输出性能. 自然环境中风向是多变的, Zhang等[113]设计了一种多自由度风能采集系统, 如图11(a), 在圆周阵列6个柔性TENG单元, 在任意方向的风激励下产生振动, 从而驱动柔性单元下部的接触分离单元进行工作, 并且由于对称性设计, 器件可以直接作为风向传感器. 压电悬臂梁作为典型的能量采集单元, 可以方便进行圆周或线性阵列, 形成多自由度系统, 能够有效拓宽工作频域. 如图11(b), Deng等[114]设计了一种多稳态振动能量采集系统, 依靠阵列多个带有末端磁体的悬臂梁之间的动力学协同运动而形成多稳态系统, 无需外部静磁体, 更加利于集成为立方体用于波浪、桥梁振动等能量采集. 如图11(c), Fang等[115]将阵列结构从二维平面拓展到三维空间, 设计了一种仿音乐盒结构的旋转拨动式压电能量采集系统. 在三维空间阵列的旋转拨动结构可以减少振动干扰, 在高旋转速度下收集更多能量, 并且具有较宽的有效工作频率范围. Lai等[116]将三稳态结构与三稳态结构交叉阵列组成一个具有多稳态特性的多自由度系统, 能够在 < 3 m/s2的弱激励下工作, 克服了传统多稳态系统在弱激励下不易越过势能阱的缺点, 可以在弱激励下产生更宽的工作带宽.
3.2 耦合系统
二自由度摆是最常见的具有耦合作用的多稳态系统, 研究者们基于二自由度摆的衍生机构设计了各种各样的能量采集系统, 经过动力学调控设计有助于提升系统的电学输出性能[117]. 如图12(a), Iqbal等[118]提出了一个2-DOF风能与振动能量复合采集系统, 能够将桥梁振动和环境风能同时转换为电能. 当装置受到低频振动激励时, 具有较低谐振频率的上悬臂梁开始振动, EMH由于磁体和线圈的相对运动而发电, 与此同时, 黏贴在上悬臂梁上的压电材料也会由于振动而发电. 当外激励频率较高时, 下悬臂梁(固定线圈)的相对位移会更大(接近共振区域), 因此EMH也会产生电能. 当周围脉动的风能冲击机翼时, 升力使机翼和梁在竖直方向振动, 同时在线圈和压电材料中产生电压. 如图12(b), Hu等[119]提出了一种基于梳状梁的压电风能采集系统, 由主梁和一系列寄生梁共同构成多自由度系统, 在气动激励下, 主梁和寄生梁之间产生力的相互作用, 在实验中能够将切入风速从2.24 m/s降至1.96 m/s. 在图12(c)中, Yu等[120]提出了一种2-DOF电磁能量采集系统, 通过设计磁斥力和吸引力之间的相互作用来实现双稳态, 可以通过调整两个共振峰之间的频宽提升能量采集系统的性能. Gu等[121-122]提出了一种能够自调频的旋转能量采集系统, 由一个相对刚性的压电梁和一个端部安装有末端质量的窄而柔性的驱动梁组成. 末端质量在重力的影响下反复撞击发电梁而发电. 旋转产生的离心力会改变柔性驱动梁的谐振频率和能量采集系统的动力学响应. 经过参数优化设计, 能量采集系统的谐振频率在4 ~ 16.2 Hz的宽频范围内与旋转速度基本匹配. Kim等[123]利用悬臂梁长度不同以及磁力调控设计了一个双稳态系统, 在基座激励下, 两个末端磁体相对的悬臂梁为相互耦合的双稳态系统, 大幅度的阱间运动能够拓宽有效工作频宽和提高输出功率. 如图12(d), 也可以将该2-DOF系统用于旋转能量采集, 通过调整末端磁体的大小调整激励力幅值和磁力大小, 有利于低转速下振动能量采集[124]. 某些超材料是一种常见的多自由度耦合结构, 单胞结构阵列而成的多胞结构在激励下能够产生独特的动力学响应, 有助于提升能量采集系统的性能. 如图12(e), Xu等[125]设计了一个带有中心集中质量的手状梁的单胞结构, 能够最大限度地提高振动时手状梁结构与基底的有效接触面积. 随后, 将单胞结构阵列在板上, 形成一种同时具有能量采集和振动控制的超材料, 在低频范围内具有良好的能量采集和抑制振动特性.
图 12 基于耦合多自由度系统的典型动力学调控能量采集系统: (a) 振动−风能复合能量采集系统[118], (b) 梳状梁风能采集系统[119],(c) 2-DOF电磁能量采集系统[120], (d) 磁力调控2-DOF系统[124], (e) 超材料系统[125]Figure 12. Typical dynamic regulation energy harvesting systems based on coupled multi-DOF system: (a) vibration-wind energy harvesting system[118], (b) comb-like beam based wind energy harvesting system[119], (c) 2-DOF electromagnetic energy harvesting system[120], (d) magnetic regulation 2-DOF system[124], (e) metamaterial system[125]4. 系统调控
能量采集系统所采集的能量源是分布式的、无序的、无线的高熵能源, 系统的工况也是多变的, 会显著影响能量采集系统的工作状态、输出性能、可靠性和使用寿命等. 因此, 需要针对不同的应用对象进行动力学设计与调控, 使其能够满足多种工况, 有助于提升能量采集系统的综合性能. 按照动力学调控方法对其进行分类, 主要分为两种类型: 自适应控制和策略控制.
4.1 自适应调控
自适应控制方法使能量采集系统根据激励形式的变化, 自适应调控自身动力学特性(机构、结构和固有频率等), 从而更加灵活地采集能量并满足不同需求. 在汽车无级变速系统的启发下, Yong等[126]提出了一种多级自动切换能量采集装置, 基于同心双转轴结构设计, 集成了两个不同形状、尺寸和风杯臂长的独立TENG. 多级结构中的不同模块在不同风速下具有自适应性, 能够在各自的风速范围内以最高效率收集风能并转换为电能, 拓宽了系统的有效工作风速范围. 棘轮棘爪可以自适应地选择性接受外界驱动, 即当棘爪的速度大于棘轮, 棘爪棘轮啮合, 产生激励; 当棘爪的速度小于棘轮, 棘爪滑开, 不阻碍棘轮工作. 这样使得棘轮(即工作轮)可以最大化吸收外部激励能量, 而不被外部激励反向作用阻碍. 如图13(a)所示, Zhang等[127-128]利用扭转驱动结构和棘轮离合器结构采集人体低频运动的机械能, 在跑步机测试时, 棘轮的最大转速为3700 r/min. Fan等[129-130]设计了一种复合结构的拨片, 具有棘爪的功能, 在转子逆时针旋转时提供足够大的驱动力, 转子顺时针旋转期间提供非常小的滑动摩擦阻力, 能够将超低频激励转化为单向旋转, 并且在外激励消失后转子仍旧保持较长时间旋转并输出电能.
自适应调整固有频率的方法是压电悬臂梁能量采集系统中最常用的自适应控制方法[131-133]. Kim等[134]提出了一种自适应调频策略用于振动能量采集, 在外界激励下, 简支梁中间的质量块可以沿着梁滑动, 根据外激励的变化自适应调节系统的谐振频率, 使谐振频率与激励频率匹配, 能够提高压电能量采集的输出效果. 如图13(b)所示, Shin等[135]也采用了类似的自适应调频策略. 其工作原理为: 当在非谐振区间, 滑块与悬臂梁振幅较小, 滑块与悬臂梁之间的接触压力以及相对摩擦力也较小, 滑块会产生滑动; 当滑块滑到适当位置, 使得系统谐振频率匹配激励频率, 滑块与悬臂梁之间的振幅较大, 两者之间的接触压力较大, 滑块与悬臂梁之间的摩擦力足够大使得滑块不再滑动, 与悬臂梁一起大幅振动. 在实验中, 该系统的有效工作频宽相比于没有自调频的系统扩大了1400%. 在旋转能量采集系统中, 可以利用离心力随着转速的变化自适应调整系统的刚度, 从而适应不同的旋转激励, 提升系统的电学输出性能[136-137]. 如图13(c)所示, Fang等[138]建立了离心刚化和旋转软化的机电耦合方程, 系统分析了离心力对压电悬臂梁在旋转激励下的影响. 离心刚化效应可以拓宽系统的有效工作频宽, 系统在高转速激励下具有更好的输出性能; 旋转软化效应能够降低系统的谐振频率, 更适用于低转速激励下的应用场景. 此外, 可以将非线性磁力与离心力配合使用, 共同调控系统的动力学特性, 进一步降低系统的有效工作频率[139].
4.2 策略调控
机械能量采集与自供能传感系统的能量流动过程为: 能量的输入(环境中机械能转换为规律可控的机械能)—能量的转换(机械能转换为电能)—能量的存储与利用(能源管理系统). 因此, 需要对整体系统进行策略控制, 调控系统的动力学和电学性能. 飞轮是典型的机械能量存储单元, 可以作为一个整体用于调控系统中机械能与电能之间的转换. 由于机电换能器在电能输出较大时在电路系统中的阻尼也会随之增大, 用飞轮先存储机械能量, 然后可控制地转换为电能, 有助于提升系统整体的机电转换效率. 如图14(a), Xie等[140]利用飞轮单向旋转和储能的特点, 设计了一个可以将随机触发运动转化为连续旋转运动的TENG. 当对推杆施加随机触发运动时, 推杆和独立飞轮将触发运动转化为轴的旋转运动, 工作飞轮由旋转轴驱动以存储能量, 并可连续高速旋转而产生电能. 即使在触发运动停止后, 飞轮仍旧可以保持一段时间的高速旋转而基于电磁单元或摩擦纳米发电机发电[141-144]. 平面涡卷弹簧(发条)也可以存贮弹性势能, 并利用其弹力逐渐松开时产生动力. 如图14(b), 受到机械手表的启发, Han等[145]利用齿轮和扭转发条组成储能结构, 发条采集不规则和低频运动能量并旋转齿轮, 将能量传递给擒纵机构, 擒纵机构将低频激励转换为扭转谐振器的高速旋转运动而发电, 可以实现一种稳定、持久和高输出功率的TENG, 在5 s的输入激励下产生110 s (22倍)的持久稳定输出功率. 为了提升TENG的输出性能, 王中林院士团队提出了电荷泵浦策略和电荷自泵浦摩擦纳米发电机[146-148]. 如图14(c), 电荷泵浦能够将电荷存储在电极中, 再根据需求释放到主发电机中, 注入的束缚电荷可类同于摩擦静电荷激发电场, 但其电荷密度理论上仅受到介电击穿强度的限制, 同时不需要通过剧烈的摩擦产生, 能够极大地提升TENG的表面电荷密度, 并且可以作为一种高性能基础元件用于连续或间歇地激励收集环境机械能[149]. 能量管理系统不仅可以将交流电转换为直流电, 还可以通过多种电路处理方法和控制算法进一步减小能耗、提高能量采集系统的效率[150]. 如图14(d), 由于非线性动力学系统与SECE非线性电路系统结合, 产生的阻尼效应影响动力学系统的非线性特性, 不利于非线性刚度带来的较宽工作频域, Lallart等[151]在SECE中引入了相位延迟, 在不损失过多输出功率的情况下, 保证了有效工作带宽, 平衡了工作带宽和机电转换效率之间的问题.
5. 挑战和展望
机械能量采集具有灵活便捷、零碳环保和可持续等优势, 能够与物联网、大数据和人工智能等技术结合, 实现自供能的智慧互联, 在人体健康监测、智慧医疗、生态环境监测、高精尖装备故障诊断、航空航天工程和海洋资源开发利用等领域具有广泛的应用前景. 近年来, 众多学者已经提出了多种动力学调控方法提升机械能量采集系统的综合性能, 但是面向机械能量采集的工程应用需求, 仍旧存在一些关键挑战.
(1) 输出功率较低, 难以满足工程应用需求. 虽然近年来研究人员利用不同的动力学调控方法提升机械能量采集系统的输出功率, 但是大部分器件的平均输出功率仍旧为μW至mW量级, 少量器件可以突破W量级. 此外, 大部分报道工作中的最大平均功率是指最佳激励工况下器件的平均输出功率, 而难以保证实际工况复杂激励下的器件输出功率. 因此, 如何进一步提高能量采集系统适用于不同实际工况的平均输出功率是亟待解决的关键问题.
(2) 现有动力学调控方法没有形成协同效果. 尽管现有的频率提升、激励放大和非线性宽频等动力学调控方法从不同方面提升了机械能量采集系统的性能, 但这些方法和技术是孤立的, 可能会相互影响, 没有形成协同提升效果. 系统化考虑这些方法和技术有望提升系统综合性能和设计灵活性. 但目前大部分研究对这些方法和技术的相互影响和协同效果的考虑很少或尚未涉及.
(3) 较少考虑系统的可靠性、鲁棒性和环境适应性. 目前, 大部分动力学调控方法主要用于提升能量采集系统的输出功率, 且大部分原理样机在实验室条件下进行定量测试和验证性测试. 然而, 面向实际应用, 传感器分布广泛且有些传感器分布在恶劣环境区域, 如何保证能量采集系统长期有效的功率输出?因此, 器件的可靠性、鲁棒性和环境适应性也需要通过动力学调控方法进行设计和优化, 使其能够切实解决工程问题.
针对这些关键挑战和当前动力学调控方法的研究现状, 未来可以在以下几个方面继续开展深入研究.
(1) 完善动力学调控方法体系. 本文构建了基本的机械能量采集动力学调控方法体系. 其中, 激励调制方法能够在能量输入端, 即外激励与能量采集系统之间进行调控; 非线性系统、多自由度系统从器件的机械结构部分改善系统动力学行为; 系统调控方法综合考虑了整体系统的动力学和电学特性进行调控. 在未来, 还需要阐明动力学调控原理与方法论, 建立动力学调控案例库, 为机械能量采集系统非标设计提供参考.
(2) 考虑动力学调控方法与其他相关技术集成设计, 提升系统综合性能. 机械能量采集系统由机电转换材料、机械结构、电路系统等几个关键部分构成. 未来可以考虑将动力学调控方法与新材料结构设计结合, 比如利用超材料结构特性实现力学调控. 目前, 大多数能量采集系统的能量管理单元主要采用滤波整流, 升压降压以及储能单元作为能量采集系统和用电器之间的桥梁, 较少考虑电路系统与动力学系统(机械结构)的匹配设计, 能量损耗较大. 因此, 可以将动力学调控方法与电路优化设计方法相结合, 进一步提升系统综合性能.
(3) 面向工程应用, 推动能量采集系统产品化. 目前能量采集的研究大多只是在实验室或模拟环境中进行原理性验证, 很少考虑能量采集系统在复杂环境下的适应性. 动力学调控方法是推动能量采集技术从实验室走向工程应用的重要途径, 但距离能量采集系统的产品化仍有大量工作需要进行. 例如, 可穿戴人体运动能量采集系统需要考虑轻量化设计和人体舒适性, 波浪能量采集系统需要考虑海水腐蚀和风吹日晒下器件的可靠性等. 需要建立详细的能量采集产品机电转换效率、输出功率、可靠性、兼容性和环境适应性等测试和评估标准, 以推动能量采集系统产品化.
6. 结论
动力学调控方法改善了机械能量采集系统的动力学特性, 使其与特定的环境激励相匹配, 提升了机械能量采集系统的俘能效果、机电转换效率和输出电学性能. 本文构建了包括激励调制、非线性系统、多自由度系统、自适应控制和策略调控等方法的机械能量采集动力学调控方法体系, 论述了动力学调控方法的最新研究进展, 包括每类动力学调控方法的特点和典型设计, 给出了动力学调控方法的关键挑战和未来发展方向. 本文不仅为机械能量采集系统适应复杂环境激励提供了新的动力学调控视角, 还构建初步的方法体系, 以及可供参考的具体设计, 有益于促进机械能量采集基础理论与应用技术的发展.
-
图 2 流体运动转换为机械运动的典型动力学调控能量采集系统: (a)水流能转换为旋转运动[20], (b)风能转换为振动(驰振)[24], (c)风能转换为振动(颤振)[25], (d)风能转换为旋转和振动[27]
Figure 2. Typical dynamic regulation energy harvesting systems for converting fluid motion into mechanical motion: (a) convert water flow energy into rotary motion[20], (b) convert wind energy into vibration (galloping)[24], (c) convert wind energy into vibration (flutter)[25], (d) convert wind energy into rotation and vibration[27]
图 3 不可控运动形式转换为可控作用力的典型动力学调控能量采集系统: (a)杠铃式压电堆叠振动能量采集系统[28], (b)抗冲击式压电能量采集系统[30], (c)磁力耦合钹形振动能量采集系统[33]
Figure 3. Typical dynamic regulation energy harvesting systems for converting uncontrollable motion forms into controllable forces: (a) barbell-shaped piezoelectric stacking vibration energy harvesting system[28], (b) impact resistant piezoelectric energy harvesting system[30], (c) magnetic coupling cymbal unit vibration energy harvesting system[33]
图 4 往复运动转换为旋转/滚动运动的典型动力学调控能量采集系统: (a)往复运动转换为双向旋转[34], (b), (c)往复运动转换为单向旋转[36-37], (d)往复运动转换为滚压运动[39]
Figure 4. Typical dynamic regulation energy harvesting systems for converting reciprocating motion into rotation/rolling: (a) convert reciprocating motion into bidirectional rotation[34], (b) and (c) convert reciprocating motion into unidirectional rotation[36-37], (d) convert reciprocating motion to rolling-depression motion[39]
图 5 旋转/滚动运动转换为振动的典型动力学调控能量采集系统: (a)利用重力将旋转运动转换为振动[40], (b)利用磁力将旋转运动转换为振动[44], (c)滚动转换为振动[45], (d)利用拨动力将旋转运动转换为振动[46]
Figure 5. Typical dynamic regulation energy harvesting systems for converting rotation/rolling into vibration: (a) convert rotation into vibration by gravity[40], (b) convert rotation into vibration by magnetic force[44], (c) convert rolling into vibration[45], (d) convert rotation motion into vibration by plucking force[46]
图 6 激励频率提升的典型动力学调控能量采集系统: (a)齿轮组升频机制[47], (b)机械拨动升频机制[50], (c)机械碰撞升频机制[51], (d)磁增频转换器机制[53], (e)栅盘式结构升频机制[56]
Figure 6. Typical dynamic regulation energy harvesting systems using excitation frequency-up conversion: (a) gear set frequency-up mechanism[47], (b) mechanical plucking frequency-up mechanism[50], (c) mechanical collision frequency-up mechanism[51], (d) magnetic frequency-up converter mechanism[53], (e) segmentally structured disk frequency-up mechanism[56]
图 7 激励力放大的典型动力学调控能量采集系统: (a)压电堆弯张放大结构[61], (b)双向两级放大型弯张结构[63], (c)高效压缩模式压电能量采集器[65], (d)杠杆原理用于激励力放大[73]
Figure 7. Typical dynamic regulation energy harvesting systems using excitation force amplification: (a) piezoelectric stack flextensional structure[61], (b) two-directional two-stage amplified flextensional structure[63], (c) high efficiency compression mode energy harvester[65], (d) lever mechanism for excitation force amplification[73]
图 8 基于非线性磁力调控的典型动力学调控能量采集系统: (a)双稳态系统[82], (b)非线性磁力升频系统[85], (c)复合型多稳态振动能量采集系统[86], (d)旋转多稳态系统[88]
Figure 8. Typical dynamic regulation energy harvesting systems using nonlinear magnetic regulation: (a) bistable system[82], (b) nonlinear magnetic frequency-up system[85], (c) hybrid multistable vibration energy harvesting system[86], (d) multistable rotating energy harvesting system[88]
图 10 基于非线性几何结构的典型动力学调控能量采集系统: (a) 三弹簧双稳态准零刚度系统[99], (b) X型结构[102], (c) 锥形弹簧系统[105], (d) 多稳态正交平面柔顺机构[106], (e) 屈曲梁系统[109], (f) 柔性边界系统[111]
Figure 10. Typical dynamic regulation energy harvesting systems based on nonlinear geometry: (a) three spring bistable quasi-zero-stiffness system[99], (b) X-shaped structure[102], (c) tapered spring system[105], (d) multistable compliant orthoplanar spring mechanism[106], (e) buckling beam system[109], (f) flexible stopper system[111]
图 12 基于耦合多自由度系统的典型动力学调控能量采集系统: (a) 振动−风能复合能量采集系统[118], (b) 梳状梁风能采集系统[119],(c) 2-DOF电磁能量采集系统[120], (d) 磁力调控2-DOF系统[124], (e) 超材料系统[125]
Figure 12. Typical dynamic regulation energy harvesting systems based on coupled multi-DOF system: (a) vibration-wind energy harvesting system[118], (b) comb-like beam based wind energy harvesting system[119], (c) 2-DOF electromagnetic energy harvesting system[120], (d) magnetic regulation 2-DOF system[124], (e) metamaterial system[125]
图 13 基于自适应调控的典型动力学调控能量采集系统: (a)扭转结构和棘轮系统[128], (b)自适应调整固有频率系统[135], (c)离心力自适应控制系统[138]
Figure 13. Typical dynamic regulation energy harvesting systems based on adaptive regulation: (a) twist rod and ratchet system[128], (b) adaptive natural frequency adjustment system[135], (c) centrifugal force adaptive control system[138]
图 14 基于策略调控的典型动力学调控能量采集系统: (a)飞轮储能策略[140], (b)平面涡卷弹簧储能与擒纵机构配合策略[145], (c)电荷泵浦策略[149], (d)引入相位延迟的非线性电路系统[151]
Figure 14. Typical dynamic regulation energy harvesting systems based on strategy regulation: (a) flywheel energy storage strategy[140], (b) hair spring energy storage strategy and escapement mechanism[145], (c) charge pumping strategy[149], (d) nonlinear circuit system with phase delay[151]
-
[1] Zhou Y, Xiao X, Chen G, et al. Self-powered sensing technologies for human metaverse interfacing. Joule, 2022, 6(7): 1381-1389 doi: 10.1016/j.joule.2022.06.011
[2] 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望. 机械工程学报, 2020, 55(7): 89-101 (Zhang Chi, Fu Xianpeng, Wang Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems. Journal of Mechanical Engineering, 2020, 55(7): 89-101 (in Chinese) Zhang Chi, Fu Xianpeng, Wang Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems. Journal of Mechanical Engineering, 2020, 55(7): 89-101 (in Chinese))
[3] 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望. 机械工程学报, 2020, 56(13): 1-15 (Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese) doi: 10.3901/JME.2020.13.001 Qi Youchao, Zhao Junqing, Zhang Chi. Review and prospect of micro-nano vibration energy harvesters. Journal of Mechanical Engineering, 2020, 56(13): 1-15 (in Chinese)) doi: 10.3901/JME.2020.13.001
[4] 张伟, 刘爽, 毛佳佳等. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报, 2022, 54(4): 1102-1112 (Zhang Wei, Liu Shuang, Mao Jiajia, et al. Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese) doi: 10.6052/0459-1879-21-676 Zhang Wei, Liu Shuang, Mao Jia-Jia, et al. Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese)) doi: 10.6052/0459-1879-21-676
[5] 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927 (Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927 (in Chinese) Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-27 (in Chinese))
[6] 赵林川, 邹鸿翔, 刘丰瑞等. 压电−摩擦电复合型旋转能量采集动力学协同调控机制研究. 力学学报, 2021, 53(11): 1-11 (Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 1-11 (in Chinese) doi: 10.6052/0459-1879-377 Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 1-11 (in Chinese)) doi: 10.6052/0459-1879-377
[7] Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: principle, progress, and perspectives. Journal of Sound and Vibration, 2022, 528: 116886 doi: 10.1016/j.jsv.2022.116886
[8] Lai Z, Xu J, Bowen CR, et al. Self-powered and self-sensing devices based on human motion. Joule, 2022, 6(7): 1501-1565 doi: 10.1016/j.joule.2022.06.013
[9] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese) Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-909 (in Chinese))
[10] 吴义鹏 李森, 蓝春波等. 压电能量俘获结构及其升频转换技术的发展现状. 机械工程学报, 2022, 58(20): 27-45 (Wu Yipeng, Li Sen, Lan Chunbo, et al. Recent development of piezoelectric energy harvesting structures and the technology of frequency up-converting oscillators. Journal of Mechanical Engineering, 2022, 58(20): 27-45 (in Chinese) doi: 10.3901/JME.2022.20.027 Wu Yipeng, Li Sen, Lan Chunbo, et al. Recent development of piezoelectric energy harvesting structures and the technology of frequency up-converting oscillators. Journal of Mechanical Engineering, 2022, 58(20): 27-45 (in Chinese)) doi: 10.3901/JME.2022.20.027
[11] 陈仲生, 曹军义, 秦朝烨等. 汽车悬架同步振动抑制与能量收集综述与展望. 机械工程学报, 2022, 58(20): 3-26 Chen Zhongsheng, Cao Junyi, Qin Zhaoye, et al. Simultaneous vibration suppression and energy harvesting of vehicle suspension systems: status and prospects. Journal of Mechanical Engineering, 2022, 58(20): 3-26 (in Chinese))
[12] Zhao LC, Zou HX, Wei KX, et al. Mechanical intelligent energy harvesting: from methodology to applications. Advanced Energy Materials, 2023, 13(29): 2300557
[13] Zou HX, Zhao LC, Gao QH, et al. Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Applied Energy, 2019, 255: 113871 doi: 10.1016/j.apenergy.2019.113871
[14] Wang Y, Liu X, Wang Y, et al. Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano, 2021, 15(10): 15700-15709 doi: 10.1021/acsnano.1c05127
[15] Jia Y, Jiang Q, Sun H, et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Advanced Materials, 2021, 33(42): 2102990 doi: 10.1002/adma.202102990
[16] An J, Wang Z, Jiang T, et al. Reliable mechatronic indicator for self-powered liquid sensing toward smart manufacture and safe transportation. Materials Today, 2020, 41: 10-20 doi: 10.1016/j.mattod.2020.06.003
[17] Zhao X, Askari H, Chen J. Nanogenerators for smart cities in the era of 5 g and internet of things. Joule, 2021, 5(6): 1391-1431 doi: 10.1016/j.joule.2021.03.013
[18] Zhong Y, Zhao H, Guo Y, et al. An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Advanced Materials Technologies, 2019, 4(12): 1900741 doi: 10.1002/admt.201900741
[19] Pan H, Li H, Zhang T, et al. A portable renewable wind energy harvesting system integrated s-rotor and H-rotor for self-powered applications in high-speed railway tunnels. Energy Conversion and Management, 2019, 196: 56-68 doi: 10.1016/j.enconman.2019.05.115
[20] Cheng G, Lin ZH, Du ZL, et al. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano, 2014, 8(2): 1932-1939 doi: 10.1021/nn406565k
[21] Xie Y, Wang S, Niu S, et al. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6: 129-136 doi: 10.1016/j.nanoen.2014.03.015
[22] Kan J, Fan C, Wang S, et al. Study on a piezo-windmill for energy harvesting. Renewable Energy, 2016, 97: 210-217 doi: 10.1016/j.renene.2016.05.055
[23] Myers R, Vickers M, Kim H, et al. Small scale windmill. Applied Physics Letters, 2007, 90(5): 054106 doi: 10.1063/1.2435346
[24] Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
[25] Wang S, Mu X, Wang X, et al. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano, 2015, 9(10): 9554-9563 doi: 10.1021/acsnano.5b04396
[26] Xie Y, Wang S, Lin L, et al. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 2013, 7(8): 7119-7125 doi: 10.1021/nn402477h
[27] Ye C, Dong K, An J, et al. A triboelectric-electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Letters, 2021, 6(4): 1443-1452
[28] Wu J, Chen X, Chu Z, et al. A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic. Applied Physics Letters, 2016, 109(17): 173901 doi: 10.1063/1.4966125
[29] Chen C, Sharafi A, Sun JQ. A high density piezoelectric energy harvesting device from highway traffic-design analysis and laboratory validation. Applied Energy, 2020, 269: 115073 doi: 10.1016/j.apenergy.2020.115073
[30] Chen C, Xu TB, Yazdani A, et al. A high density piezoelectric energy harvesting device from highway traffic-system design and road test. Applied Energy, 2021, 299: 117331 doi: 10.1016/j.apenergy.2021.117331
[31] Li X, Guo M, Dong S. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(4): 698-703 doi: 10.1109/TUFFC.2011.1862
[32] Yan B, Zhang C, Li L. Design and fabrication of a high-efficiency magnetostrictive energy harvester for high-impact vibration systems. IEEE Transactions on Magnetics, 2015, 51(11): 8205404
[33] Zou HX, Zhang WM, Li WB, et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments. Journal of Sound and Vibration, 2018, 416: 55-79 doi: 10.1016/j.jsv.2017.11.041
[34] Ali A, Qi L, Zhang T, et al. Design of novel energy-harvesting regenerative shock absorber using barrel cam follower mechanism to power the auxiliaries of a driverless electric bus. Sustainable Energy Technologies and Assessments, 2021, 48: 101565 doi: 10.1016/j.seta.2021.101565
[35] Cho S, Yun Y, Jang S, et al. Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy, 2020, 71: 104584 doi: 10.1016/j.nanoen.2020.104584
[36] Yun Y, Jang S, Cho S, et al. Exo-shoe triboelectric nanogenerator: toward high-performance wearable biomechanical energy harvester. Nano Energy, 2020, 71: 105525
[37] Liang C, Ai J, Zuo L. Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Engineering, 2017, 136: 190-200 doi: 10.1016/j.oceaneng.2017.03.024
[38] Mi J, Li Q, Liu M, et al. Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification. Applied Energy, 2020, 279: 115726 doi: 10.1016/j.apenergy.2020.115726
[39] Zou HX, Zhang WM, Wei KX, et al. Design and analysis of a piezoelectric vibration energy harvester using rolling mechanism. Journal of Vibration and Acoustics, 2016, 138(5): 051007 doi: 10.1115/1.4033493
[40] Rui X, Zeng Z, Zhang Y, et al. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels. IEEE Transactions on Vehicular Technology, 2019, 69(2): 1440-1451
[41] Nezami S, Jung H, Lee S. Design of a disk-swing driven piezoelectric energy harvester for slow rotary system application. Smart Materials and Structures, 2019, 28(7): 074001 doi: 10.1088/1361-665X/ab1598
[42] Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A-Physical, 2017, 262: 123-129 doi: 10.1016/j.sna.2017.05.027
[43] Yang Y, Shen Q, Jin J, et al. Rotational piezoelectric wind energy harvesting using impact-induced resonance. Applied Physics Letters, 2014, 105(5): 053901 doi: 10.1063/1.4887481
[44] Fu H, Yeatman EM. Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation. Mechanical Systems and Signal Processing, 2019, 125: 229-244 doi: 10.1016/j.ymssp.2018.04.043
[45] Chen J, Guo H, Liu G, et al. A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems. Nano Energy, 2017, 33: 508-514 doi: 10.1016/j.nanoen.2017.01.052
[46] He L, Zhou J, Zhang Z, et al. Research on multi-group dual piezoelectric energy harvester driven by inertial wheel with magnet coupling and plucking. Energy Conversion and Management, 2021, 243: 114351 doi: 10.1016/j.enconman.2021.114351
[47] Donelan JM, Li Q, Naing V, et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science, 2008, 319(5864): 807-810 doi: 10.1126/science.1149860
[48] Rome LC, Flynn L, Goldman EM, et al. Generating electricity while walking with loads. Science, 2005, 309(5741): 1725 doi: 10.1126/science.1111063
[49] Ahmad MM, Khan NM, Khan FU. Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism. International Journal of Energy Research, 2021, 45(11): 15609-15645 doi: 10.1002/er.6832
[50] Pozzi M, Zhu M. Plucked piezoelectric bimorphs for knee-joint energy harvesting: Modelling and experimental validation. Smart Materials and Structures, 2011, 20(5): 055007 doi: 10.1088/0964-1726/20/5/055007
[51] Fan K, Tan Q, Liu H, et al. Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Materials and Structures, 2018, 27(8): 085001 doi: 10.1088/1361-665X/aaae92
[52] Li W, Chau KT, Jiang JZ. Application of linear magnetic gears for pseudo-direct-drive oceanic wave energy harvesting. IEEE Transactions on Magnetics, 2011, 47(10): 2624-2627 doi: 10.1109/TMAG.2011.2146233
[53] Cai M, Wang J, Liao WH. Self-powered smart watch and wristband enabled by embedded generator. Applied Energy, 2020, 263: 114682 doi: 10.1016/j.apenergy.2020.114682
[54] Zou HX, Zhang WM, Li WB, et al. Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester. Smart Materials and Structures, 2017, 26(11): 115023 doi: 10.1088/1361-665X/aa8eb8
[55] Lin L, Wang S, Xie Y, et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 2013, 13(6): 2916-2923 doi: 10.1021/nl4013002
[56] Bai Y, Xu L, He C, et al. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 2019, 66: 104117 doi: 10.1016/j.nanoen.2019.104117
[57] Chen Y, Cheng Y, Jie Y, et al. Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy & Environmental Science, 2019, 12(9): 2678-2684
[58] Wang H, Jasim A, Chen X. Energy harvesting technologies in roadway and bridge for different applications—a comprehensive review. Applied Energy, 2018, 212: 1083-1094 doi: 10.1016/j.apenergy.2017.12.125
[59] Newnham RE, Zhang J, Meyer R. Cymbal transducers: A review ISAF 2000//Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics. IEEE, 2000, 1: 29-132
[60] Evans M, Tang L, Tao K, et al. Design and optimisation of an underfloor energy harvesting system. Sensors and Actuators A: Physical, 2019, 285: 613-622 doi: 10.1016/j.sna.2018.12.002
[61] Qian F, Xu TB, Zuo L. Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Conversion and Management, 2018, 171: 1352-1364 doi: 10.1016/j.enconman.2018.06.069
[62] Qian F, Xu TB, Zuo L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy, 2019, 189: 116140 doi: 10.1016/j.energy.2019.116140
[63] Wu Z, Xu Q. Design and development of a novel two-directional energy harvester with single piezoelectric stack. IEEE Transactions on Industrial Electronics, 2020, 68(2): 1290-1298
[64] Yang Z, Zu J. Toward harvesting vibration energy from multiple directions by a nonlinear compressive-mode piezoelectric transducer. IEEE-ASME Transactions on Mechatronics, 2016, 21(3): 1787-1791 doi: 10.1109/TMECH.2015.2459014
[65] Yang Z, Zu J. High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energy Conversion and Management, 2014, 88: 829-833 doi: 10.1016/j.enconman.2014.09.026
[66] Yang Z, Zhu Y, Zu J. Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Materials and Structures, 2015, 24(2): 025028 doi: 10.1088/0964-1726/24/2/025028
[67] Yang Z, Zu J, Xu Z. Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits. IEEE-ASME Transactions on Mechatronics, 2016, 21(4): 2174-2184 doi: 10.1109/TMECH.2016.2530619
[68] Wang Y, Yang Z, Cao D. On the offset distance of rotational piezoelectric energy harvesters. Energy, 2021, 220: 119676 doi: 10.1016/j.energy.2020.119676
[69] Li HT, Yang Z, Zu J, et al. Numerical and experimental study of a compressive-mode energy harvester under random excitations. Smart Materials and Structures, 2017, 26(3): 035064 doi: 10.1088/1361-665X/aa5e61
[70] Wang M, Yin P, Li Z, et al. Harnessing energy from spring suspension systems with a compressive-mode high-power-density piezoelectric transducer. Energy Conversion and Management, 2020, 220: 113050 doi: 10.1016/j.enconman.2020.113050
[71] Li Z, Zu J, Yang Z. Introducing hinge mechanisms to one compressive-mode piezoelectric energy harvester. Journal of Renewable and Sustainable Energy, 2018, 10(3): 034704 doi: 10.1063/1.4997184
[72] Li Z, Yang Z, Naguib H, et al. Design and studies on a low-frequency truss-based compressive-mode piezoelectric energy harvester. IEEE-ASME Transactions on Mechatronics, 2018, 23(6): 2849-2858 doi: 10.1109/TMECH.2018.2871781
[73] Hua R, Liu H, Yang H, et al. A nonlinear interface integrated lever mechanism for piezoelectric footstep energy harvesting. Applied Physics Letters, 2018, 113(5): 053902 doi: 10.1063/1.5041259
[74] Zhang YH, Lee CH. Permanent magnet energy harvesting pedal based on compliant lever and energy storage structure. Advances in Mechanical Engineering, 2020, 12(10): 1687814020963858
[75] Yang K, Fei F, An H. Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response. Nonlinear Dynamics, 2019, 96(4): 2369-2392 doi: 10.1007/s11071-019-04929-3
[76] Yang K, Fei F, Du J. Investigation of the lever mechanism for bistable nonlinear energy harvesting under Gaussian-type stochastic excitations. Journal of Physics D-Applied Physics, 2018, 52(5): 055501
[77] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting. Physical Review Letters, 2009, 102(8): 080601 doi: 10.1103/PhysRevLett.102.080601
[78] Erturk A, Hoffmann J, Inman DJ. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009, 94(25): 254102 doi: 10.1063/1.3159815
[79] Cao DX, Lu YM, Lai SK, et al. A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester. Energy, 2022, 254: 124309 doi: 10.1016/j.energy.2022.124309
[80] Tang L, Yang Y, Soh CK. Improving functionality of vibration energy harvesters using magnets. Journal of Intelligent Material Systems and Structures, 2012, 23(13): 1433-1449 doi: 10.1177/1045389X12443016
[81] Harne RL, Wang KW. A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 2013, 22(2): 023001 doi: 10.1088/0964-1726/22/2/023001
[82] Zhou S, Cao J, Erturk A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 2013, 102(17): 173901 doi: 10.1063/1.4803445
[83] Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
[84] Zhou S, Cao J, Inman DJ, et al. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. Journal of Sound and Vibration, 2016, 373: 223-235 doi: 10.1016/j.jsv.2016.03.017
[85] Tang QC, Yang YL, Li X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Materials and Structures, 2011, 20(12): 125011 doi: 10.1088/0964-1726/20/12/125011
[86] Wang C, Lai SK, Wang JM, et al. An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Applied Energy, 2021, 291: 116825 doi: 10.1016/j.apenergy.2021.116825
[87] Zhang Y, Zheng R, Nakano K, et al. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Applied Physics Letters, 2018, 112(14): 143901 doi: 10.1063/1.5019907
[88] Mei X, Zhou S, Yang Z, et al. Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mechanical Systems and Signal Processing, 2021, 148: 107167 doi: 10.1016/j.ymssp.2020.107167
[89] Chen LQ, Jiang WA. Internal resonance energy harvesting. Journal of Applied Mechanics, 2015, 82(3): 031004 doi: 10.1115/1.4029606
[90] Chen LQ, Jiang WA, Panyam M, et al. A broadband internally resonant vibratory energy harvester. Journal of Vibration and Acoustics, 2016, 138(6): 061007 doi: 10.1115/1.4034253
[91] Chen L, Jiang W. A piezoelectric energy harvester based on internal resonance. Acta Mechanica Sinica, 2015, 31(2): 223-228 doi: 10.1007/s10409-015-0409-6
[92] Aravindan M, Ali SF. Exploring 1: 3 internal resonance for broadband piezoelectric energy harvesting. Mechanical Systems and Signal Processing, 2021, 153: 107493 doi: 10.1016/j.ymssp.2020.107493
[93] Xie Z, Wang T, Kwuimy CAK, et al. Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 2019, 28(8): 085027 doi: 10.1088/1361-665X/ab2e15
[94] Xu J, Tang J. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Applied Physics Letters, 2015, 107(21): 213902 doi: 10.1063/1.4936607
[95] Xu J, Tang J. Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. Journal of Intelligent Material Systems and Structures, 2017, 28(3): 323-338 doi: 10.1177/1045389X16642302
[96] Bao B, Zhou S, Wang Q. Interplay between internal resonance and nonlinear magnetic interaction for multi-directional energy harvesting. Energy Conversion and Management, 2021, 244: 114465 doi: 10.1016/j.enconman.2021.114465
[97] Younesian D, Alam MR. Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Applied Energy, 2017, 197: 292-302 doi: 10.1016/j.apenergy.2017.04.019
[98] Yang T, Cao Q. Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. Journal of Statistical Mechanics-Theory and Experiment, 2019, 2019(3): 033405 doi: 10.1088/1742-5468/ab0c15
[99] Wang K, Zhou J, Ouyang H, et al. A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mechanical Systems and Signal Processing, 2021, 151: 107368 doi: 10.1016/j.ymssp.2020.107368
[100] Yang T, Cao Q, Hao Z. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical Systems and Signal Processing, 2021, 155: 107636 doi: 10.1016/j.ymssp.2021.107636
[101] Yang T, Zhou S, Fang S, et al. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews, 2021, 8(3): 031317 doi: 10.1063/5.0051432
[102] Li M, Jing X. A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: design, analysis, and experimental tests. Energy Conversion and Management, 2021, 244: 114466 doi: 10.1016/j.enconman.2021.114466
[103] Sun S, Tse PW. Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH). Mechanical Systems and Signal Processing, 2019, 114: 467-485 doi: 10.1016/j.ymssp.2018.05.029
[104] Boisseau S, Despesse G, Seddik BA. Nonlinear h-shaped springs to improve efficiency of vibration energy harvesters. Journal of Applied Mechanics, 2013, 80(6): 061013 doi: 10.1115/1.4023961
[105] Paul K, Amann A, Roy S. Tapered nonlinear vibration energy harvester for powering internet of things. Applied Energy, 2021, 283: 116267 doi: 10.1016/j.apenergy.2020.116267
[106] Dhote S, Yang Z, Behdinan K, et al. Enhanced broadband multi-mode compliant orthoplanar spring piezoelectric vibration energy harvester using magnetic force. International Journal of Mechanical Sciences, 2018, 135: 63-71 doi: 10.1016/j.ijmecsci.2017.11.012
[107] Dhote S, Zu J, Zhu Y. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring. Applied Physics Letters, 2015, 106(16): 163903 doi: 10.1063/1.4919000
[108] Qian F, Abaid N, Zuo L. Multiple-scale analysis of a tunable bi-stable piezoelectric energy harvester. ASME Letters in Dynamic Systems and Control, 2020, 1(2): 021006
[109] Jung SM, Yun KS. Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation. Applied Physics Letters, 2010, 96(11): 111906 doi: 10.1063/1.3360219
[110] Fang S, Zhou S, Yurchenko D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: a review. Mechanical Systems and Signal Processing, 2022, 166: 108419 doi: 10.1016/j.ymssp.2021.108419
[111] Machado SP, Febbo M, Ramírez JM, et al. Rotational double-beam piezoelectric energy harvester impacting against a stop. Journal of Sound and Vibration, 2020, 469: 115141 doi: 10.1016/j.jsv.2019.115141
[112] Fang S, Wang S, Zhou S, et al. Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting. Applied Physics Letters, 2020, 116(6): 063903 doi: 10.1063/1.5140060
[113] Zhang X, Hu J, Yang Q, et al. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Advanced Functional Materials, 2021, 31(50): 2106527 doi: 10.1002/adfm.202106527
[114] Deng H, Du Y, Wang Z, et al. Poly-stable energy harvesting based on synergetic multistable vibration. Communications Physics, 2019, 2(1): 21 doi: 10.1038/s42005-019-0117-9
[115] Fang S, Fu X, Du X, et al. A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers. Applied Physics Letters, 2019, 114(23): 233902 doi: 10.1063/1.5098439
[116] Lai SK, Wang C, Zhang LH. A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations. Mechanical Systems and Signal Processing, 2019, 122: 87-102 doi: 10.1016/j.ymssp.2018.12.020
[117] Chen X, Gao L, Chen J, et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy, 2020, 69: 104440 doi: 10.1016/j.nanoen.2019.104440
[118] Iqbal M, Khan FU. Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Conversion and Management, 2018, 172: 611-618 doi: 10.1016/j.enconman.2018.07.044
[119] Hu G, Wang J, Tang L. A comb-like beam based piezoelectric system for galloping energy harvesting. Mechanical Systems and Signal Processing, 2021, 150: 107301 doi: 10.1016/j.ymssp.2020.107301
[120] Yu N, Ma H, Wu C, et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mechanical Systems and Signal Processing, 2021, 156: 107608 doi: 10.1016/j.ymssp.2021.107608
[121] Gu L, Livermore C. Compact passively self-tuning energy harvesting for rotating applications. Smart materials and structures, 2011, 21(1): 015002
[122] Gu L, Livermore C. Passive self-tuning energy harvester for extracting energy from rotational motion. Applied Physics Letters, 2010, 97(8): 081904 doi: 10.1063/1.3481689
[123] Kim P, Nguyen MS, Kwon O, et al. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester. Scientific Reports, 2016, 6(1): 34411 doi: 10.1038/srep34411
[124] Zou HX, Zhang WM, Li WB, et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Conversion and Management, 2017, 148: 1391-8 doi: 10.1016/j.enconman.2017.07.005
[125] Xu X, Wu Q, Pang Y, et al. Multifunctional metamaterials for energy harvesting and vibration control. Advanced Functional Materials, 2021, 32(7): 2107896
[126] Yong S, Wang J, Yang L, et al. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Advanced Energy Materials, 2021, 11(26): 2101194 doi: 10.1002/aenm.202101194
[127] Zhang Y, Luo A, Wang Y, et al. Rotational electromagnetic energy harvester for human motion application at low frequency. Applied Physics Letters, 2020, 116(5): 053902 doi: 10.1063/1.5142575
[128] Luo A, Zhang Y, Dai X, et al. An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 2020, 279: 115762 doi: 10.1016/j.apenergy.2020.115762
[129] Fan K, Wang C, Chen C, et al. A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy. Renewable Energy, 2021, 179: 339-350 doi: 10.1016/j.renene.2021.06.139
[130] Fan K, Hao J, Wang C, et al. An eccentric mass-based rotational energy harvester for capturing ultralow-frequency mechanical energy. Energy Conversion and Management, 2021, 241: 114301 doi: 10.1016/j.enconman.2021.114301
[131] Wang Z, Du Y, Li T, et al. A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design. Applied Energy, 2021, 303: 117577 doi: 10.1016/j.apenergy.2021.117577
[132] Shi G, Yang Y, Chen J, et al. A broadband piezoelectric energy harvester with movable mass for frequency active self-tuning. Smart Materials and Structures, 2020, 29(5): 055023 doi: 10.1088/1361-665X/ab7f44
[133] Sun W, Seok J. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration. Energy Conversion and Management, 2020, 205: 112472 doi: 10.1016/j.enconman.2020.112472
[134] Kim H, Smith A, Barry O, et al. Self-resonant energy harvester with a passively tuned sliding mass//Proceedings of the ASME 2019 Dynamic Systems and Control Conference. Park City, Utah, USA, October 8-11, 2019. ASME, 2019: V002T27A002
[135] Shin YH, Choi J, Kim SJ, et al. Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting. Nano Energy, 2020, 77: 104986 doi: 10.1016/j.nanoen.2020.104986
[136] Kim H, Tai WC, Parker J, et al. Self-tuning stochastic resonance energy harvesting for rotating systems under modulated noise and its application to smart tires. Mechanical Systems and Signal Processing, 2019, 122: 769-785 doi: 10.1016/j.ymssp.2018.12.040
[137] Mei X, Zhou R, Fang S, et al. Theoretical modeling and experimental validation of the centrifugal softening effect for high-efficiency energy harvesting in ultralow-frequency rotational motion. Mechanical Systems and Signal Processing, 2021, 152: 107424 doi: 10.1016/j.ymssp.2020.107424
[138] Fang S, Wang S, Zhou S, et al. Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting. Journal of Sound and Vibration, 2020, 488: 115643 doi: 10.1016/j.jsv.2020.115643
[139] Mei X, Zhou R, Yang B, et al. Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation. Journal of Sound and Vibration, 2021, 505: 116146 doi: 10.1016/j.jsv.2021.116146
[140] Xie Z, Zeng Z, Wang Y, et al. Novel sweep-type triboelectric nanogenerator utilizing single freewheel for random triggering motion energy harvesting and driver habits monitoring. Nano Energy, 2020, 68: 104360 doi: 10.1016/j.nanoen.2019.104360
[141] Lu X, Xu Y, Qiao G, et al. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy, 2020, 72: 104726 doi: 10.1016/j.nanoen.2020.104726
[142] Yang W, Gao Q, Xia X, et al. Travel switch integrated mechanical regulation triboelectric nanogenerator with linear-rotational motion transformation mechanism. Extreme Mechanics Letters, 2020, 37: 100718 doi: 10.1016/j.eml.2020.100718
[143] Yin M, Lu X, Qiao G, et al. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 2020, 10(22): 2000627 doi: 10.1002/aenm.202000627
[144] Yang Y, Yu X, Meng L, et al. Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mechanics Letters, 2021, 46: 101338 doi: 10.1016/j.eml.2021.101338
[145] Han KW, Kim JN, Rajabi-Abhari A, et al. Long-lasting and steady triboelectric energy harvesting from low-frequency irregular motions using escapement mechanism. Advanced Energy Materials, 2020, 11(4): 2002929
[146] Xu L, Bu TZ, Yang XD, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy, 2018, 49: 625-633 doi: 10.1016/j.nanoen.2018.05.011
[147] Wang H, Xu L, Bai Y, et al. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11(1): 4203 doi: 10.1038/s41467-020-17891-1
[148] Yang Z, Yang Y, Wang H, et al. Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Advanced Energy Materials, 2021, 11(28): 2101147 doi: 10.1002/aenm.202101147
[149] Bai Y, Xu L, Lin S, et al. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Advanced Energy Materials, 2020, 10(21): 2000605 doi: 10.1002/aenm.202000605
[150] Zhang Z, Xiang H, Tang L. Modeling, analysis and comparison of four charging interface circuits for piezoelectric energy harvesting. Mechanical Systems and Signal Processing, 2021, 152: 107476 doi: 10.1016/j.ymssp.2020.107476
[151] Lallart M, Zhou S, Yang Z, et al. Coupling mechanical and electrical nonlinearities: the effect of synchronized discharging on tristable energy harvesters. Applied Energy, 2020, 266: 114516 doi: 10.1016/j.apenergy.2020.114516
-
期刊类型引用(1)
1. 姜文安,卞明礼,陈立群,毕勤胜. 簇发振荡能量采集动力学理论研究进展. 动力学与控制学报. 2024(08): 1-12 . 百度学术
其他类型引用(2)