EFFECT OF ELECTROSTATIC FORCE ON SPATIAL DISTRIBUTION AND INTERPHASE ENERGY TRANSPORT IN RADIANT HEATED PARTICLE-LADEN TURBULENT CHANNEL FLOW
-
摘要: 颗粒−湍流两相流中的相间能量传递问题是学者们关注的重点之一, 而静电力作用是影响颗粒−槽道湍流两相流中颗粒倾向性分布和相间能量输运的一个重要因素. 文章对携带辐射加热带电颗粒的竖直槽道湍流两相流进行了数值研究, 重点研究颗粒在槽道中的空间分布形态以及对空间分布对相间能量输运的影响. 流体相采用基于欧拉观点的直接数值模拟, 颗粒相采用拉格朗日点−粒追踪模型, 考虑颗粒与流体之间的动量交换与热交换. 通过对颗粒局部聚集特性、颗粒与流体速度相关性和两相间能量交换的分析, 探究静电力作用下的颗粒运动和分布特点以及两相间动能和热交换的变化规律. 研究结果表明, 同种电荷颗粒之间互相排斥的静电力作用弱化了颗粒在近壁面处低速条带区的聚集现象, 颗粒的空间分布更加均匀, 且均匀性与颗粒所带的电荷量正相关. 同时发现较强的静电力作用使位于近壁区的颗粒对流体的跟随性减弱, 较之斯托克斯阻力, 静电力所起的作用占主导地位. 颗粒在空间上的均匀分布提高了流体的平均温度和速度, 强化了槽道中间区域颗粒与流体之间的动能交换与热交换并减弱了壁面附近两相之间的动能交换与热交换.Abstract: Interphase energy transfer in turbulence laden with particles is one of the focuses of scholars, and the effect of electrostatic force is an important factor affecting the particles propensity distribution and the efficiency of energy exchange between particles and turbulence in the turbulent channel flow laden with particles. In this paper, the spatial distribution of charged particles in vertical turbulent channel flow with radiation heating and the effect of spatial distribution on the energy transport between particles and turbulent flow were investigated. Direct numerical simulation was used for fluid, and Lagrange-point tracking model was used for particles. The momentum exchange and the heat exchange between particles and turbulent flow were considered. Based on the analysis of particle local aggregation characteristics, velocity correlation between particles and turbulent flow and interphase energy transport, the effect of electrostatic force on particle spatial distribution, kinetic energy exchange and heat exchange between particles and fluid were investigated. The results show that the electrostatic force of the same positive charged particles leads to the weak aggregation of particles in the low speed band area near the two wall, and the spatial distribution of particles is more uniform, which is positively correlated with the amount of charge carried by particles. At the same time, it is found that the electrostatic force attenuates the followability of particles to the fluid in the near wall region, and the electrostatic force is superior to the Stokes drag. Meanwhile, the uniform distribution of particles in the vertical channel improves the mean temperature of fluid and the mean streamwise velocity of the fluid. And it strengthens the kinetic energy exchange and the heat exchange between particles and fluid in the middle area of the vertical channel while weakens the kinetic energy exchange and the heat exchange between particles and turbulent flow near the wall.
-
表 1 流体和颗粒物性参数
Table 1. Summary of the fluid and particle properties used in the simulation
Paramater Value $Pr$ $0.71$ $h$/m $0.0225$ ${T_0}$/K 300 $\varDelta $/K 6 ${\rho _0}/({\rm{kg} } \cdot { {\rm{m} }^{ - 3} })$ $1.16$ ${\mu _0}/({\rm{kg} } \cdot { {\rm{m} }^{ - 1} \cdot {\rm{s} }^{ - 1} })$ $1.84 \times {10^{ - 5} }$ ${k_0}/({\rm{W} } \cdot { {\rm{m} }^{ - 1} \cdot {\rm{K} }^{ - 1} })$ $2.60 \times {10^{ - 2} }$ ${c_{p,0} }/({\rm{J} } \cdot {{\rm{kg} }^{ - 1} \cdot {\rm{K} }^{ - 1} })$ $1006$ ${\rho _p}/({\rm{kg} } \cdot { {\rm{m} }^{ - 3} })$ $2000$ ${c_{p,p} }/({\rm{J} } \cdot { {\rm{kg}^{ - 1} } \cdot {\rm{K} }^{ - 1} } )$ $880$ ${q_0}/({\rm{W} } \cdot { {\rm{m} }^{^{ - 2} } })$ $5000$ ${d_p}/\text{μ}{\rm{ m} }$ $81$ ${N_p}$ $96\;222$ 表 2 模拟所用无量纲参数
Table 2. Dimensionless parameters in the simulation
${d_p}/h$ $S{t_f}$ $S{t_T}$ $\Delta z/\eta $ $({d_p}/h)/\eta $ 3.59 × 10−3 2.16 × 10−1 2.82 × 10−1 0.6 0.43 -
[1] Marble FE. Dynamics of dusty gases. Annual Review of Fluid Mechanics, 1970, 2(1): 397-446 doi: 10.1146/annurev.fl.02.010170.002145 [2] Campbell CS. Rapid granular flows. Annual Review of Fluid Mechanics, 1990, 22(1): 57-90 doi: 10.1146/annurev.fl.22.010190.000421 [3] Wang X, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 2007, 46(1): 1-19 doi: 10.1016/j.ijthermalsci.2006.06.010 [4] Kribus A, Zaibel R, Carey D, et al. A solar-driven combined cycle power plant. Solar Energy, 1998, 62(2): 121-129 doi: 10.1016/S0038-092X(97)00107-2 [5] Heller P, Pfänder M, Denk T, et al. Test and evaluation of a solar powered gas turbine system. Solar Energy, 2006, 80(10): 1225-1230 doi: 10.1016/j.solener.2005.04.020 [6] Kogan M, Kogan A. Production of hydrogen and carbon by solar thermal methane splitting. I. The unseeded reactor. International Journal of Hydrogen Energy, 2003, 28(11): 1187-1198 doi: 10.1016/S0360-3199(02)00282-3 [7] Huang C, Ali T. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: Decomposition of sulfuric acid. Solar Energy, 2005, 78(5): 632-646 [8] Pedinotti S, Mariotti G, Banerjee S. Direct numerical simulation of particle behaviour in the wall region of turbulent flows in horizontal channels. International Journal of Multiphase Flow, 1992, 18(6): 927-941 doi: 10.1016/0301-9322(92)90068-R [9] Garcia M, Lopez F, Nino Y. Characterization of near-bed coherent structures in turbulent open channel flow using synchronized high-speed video and hot-film measurements. Experiments in Fluids, 1995, 19(1): 16-28 doi: 10.1007/BF00192229 [10] Squire KD, Eaton JK. Preferential concentration of particles by turbulence. Physics of Fluids A, 1991, 3(5): 1169-1178 doi: 10.1063/1.858045 [11] Fessler JR, Kulick JD, Eaton JK. Preferential concentration of heavy particles in a turbulent channel flow. Journal of Fluid Mechanics, 2000, 406(11): 55-80 [12] Pouransari H, Mani A. Effects of preferential concentration on heat transfer in particle-based solar receivers. Journal of Solar Energy Engineering, 2017, 139(2): 021008 doi: 10.1115/1.4035163 [13] Zamansky R, Coletti F, Massot M, et al. Radiation induces turbulence in particle-laden fluids. Physics of Fluids, 2014, 26(7): 71701 doi: 10.1063/1.4890296 [14] Wang LP, Maxey MR. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 1993, 256: 27-68 doi: 10.1017/S0022112093002708 [15] 王兵, 张会强, 王希麟. 颗粒在大涡结构中的弥散. 力学学报, 2005, 37(1): 105-109 (Wang Bing, Zhang Huiqiang, Wang Xilin. Partilce dispersion in large eddy structures. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 105-109 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.01.015(Wang Bing, Zhang Huiqiang, Wang Xilin. Partilce dispersion in large eddy structures. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 105-109 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.01.015 [16] Marchioli C, Soldati A. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 2002, 468: 283-315 doi: 10.1017/S0022112002001738 [17] Narayanan C, Lakehal D, Botto L, et al. Mechanisms of particle deposition in a fully developed turbulent open channel flow. Physics of Fluids, 2003, 15(3): 763-775 doi: 10.1063/1.1545473 [18] Labair H, Touhami S, Tilmatine A, et al. Study of charged particles trajectories in free-fall electrostatic separators. Journal of Electrostatics, 2017, 88: 10-14 doi: 10.1016/j.elstat.2017.01.010 [19] 黄宁, 郑晓静. 风沙跃移运动发展过程及静电力影响的数值模拟. 力学学报, 2006, 38(2): 145-152 (Huang Ning, Zheng Xiaojing. The numerical simulation of the evolution process of wind-blown sand saltation and effects of electrostaticla force. Acta Mechanica Sinica, 2006, 38(2): 145-152 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.02.001(Huang Ning, Zheng Xiaojing. The numerical simulation of the evolution process of wind-blown sand saltation and effects of electrostaticla force. Acta Mechanica Sinica, 2006, 38(2): 145-152 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.02.001 [20] Fotovat F, Bi XT, Grace JR. A perspective on electrostatics in gas-solid fluidized beds: challenges and future research needs. Powder Technol, 2018, 329: 65-75 doi: 10.1016/j.powtec.2018.01.069 [21] Lu J, Nordsiek H, Saw EW, et al. Clustering of charged inertial particles in turbulence. Physical Review Letters, 2010, 104: 184505 doi: 10.1103/PhysRevLett.104.184505 [22] Grosshans H, Bissinger C, Calero M, et al. The effect of electrostatic charges on particle-laden duct flows. Journal of Fluid Mechanics, 2021, 909: A21 doi: 10.1017/jfm.2020.956 [23] Lee V, Waitukaitis SR, Miskin MZ, et al. Direct observation of particle interactions and clustering in charged granular streams. Nature Physics, 2015, 11: 733-737 doi: 10.1038/nphys3396 [24] Jungmann F, Steinpilz T, Teiser J, et al. Sticking and restitution in collisions of charged sub-mm dielectric grains. Journal of Physics Communications, 2018, 2: 095009 doi: 10.1088/2399-6528/aad0d2 [25] Oresta P, Prosperetti A. Effects of particle settling on Rayleigh-Bénard convection. Physical Review E, 2013, 87(6): 063014 doi: 10.1103/PhysRevE.87.063014 [26] Liu CX, Dong YH. Heat transfer modulation by inertial particles in particle-laden turbulent channel flow. Journal of Heat Transfer, 2018, 140(11): 112003 doi: 10.1115/1.4040347 [27] Elghobashi S. Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annual Review of Fluid Mechanics, 2019, 51(1): 217-244 doi: 10.1146/annurev-fluid-010518-040401 [28] Frankel A, Iaccarino G, Mani A. Optical depth in particle-laden turbulent flows. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201: 10-16 doi: 10.1016/j.jqsrt.2017.06.029 [29] Balachandar S, John K. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 2010, 42(1): 111-133 doi: 10.1146/annurev.fluid.010908.165243 [30] Ranz WE, Marshall WR. Evaporation from drops. Chemical Engineering Progress, 1952, 48(173): 141-146 [31] Verzicco R. Dynamics of a vortex ring in a rotating fluid. Journal of Fluid Mechanics, 1996, 317: 215-239 doi: 10.1017/S0022112096000730 [32] Briggs WL, Henson VE, Mccormick SF. A Multigrid Tutorial. Second Edition//Society for Industrial and Applied Mathematics, 2000: 978-0-89871-462-3 [33] Dong YH, Chen LF. The effect of stable stratification and thermophoresis on fine particle deposition in a bounded turbulent flow. International Journal of Heat and Mass Transfer, 2011, 54(5-6): 1168-1178 doi: 10.1016/j.ijheatmasstransfer.2010.11.005 [34] Pan M, Dong YH, Shen L, et al. Flow modulation and heat transport of radiatively heated particles settling in Rayleigh-Bénard convection. Computers and Fluids, 2022, 241: 105454 doi: 10.1016/j.compfluid.2022.105454 [35] Yang WW, Wan ZH, Dong YH. On the energy transport and heat transfer efficiency in radiatively heated particle-laden Rayleigh-Bénard convection. Journal of Fluid Mechanics, 2022, 953(435): A35 [36] Dritselis CD, Vlachos SV. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 2011, 23: 025103 doi: 10.1063/1.3553292 [37] 郑艺君, 李庆祥, 董宇红等. 多孔介质壁面剪切湍流速度时空关联的研究. 力学学报, 2016, 48(6): 1308-1318 (Zheng Yijun, Li Qingyang, Dong Yuhong, et al. Space-time correlations of fluctuating velocity in porous wall-bounded turbulent shear flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318 (in Chinese) doi: 10.6052/0459-1879-16-208(Zheng YJ, Li QX, Dong YH, et al. Space-time correlations of fluctuating velocity in porous wall-bounded turbulent shear flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1308-1318 (in Chinese) doi: 10.6052/0459-1879-16-208 -