[1] |
Hu H, Wen J, Bao L, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Science Advances, 2017, 3(9): 1-9
|
[2] |
冯家兴, 胡海豹, 卢丙举等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020, 52(1): 24-30 (Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30 (in Chinese)Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30(in Chinese))
|
[3] |
崔光耀, 潘翀, 高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017, 49(6): 1201-1212 (Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212 (in Chinese)Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212(in Chinese))
|
[4] |
Chung J, Cho Y. Ventilated supercavitation around a moving body in a still fluid: observation and drag measurement. Journal of Fluid Mechanics, 2018, 854: 367-419 doi: 10.1017/jfm.2018.638
|
[5] |
宋武超, 王聪, 魏英杰等. 微气泡与聚合物对水下航行体减阻特性影响试验研究. 兵工学报, 2018, 39(6): 1151-1158 (Song Wuchao, Wang Cong, Wei Yingjie, et al. Influences of microbubble and homogeneous polymer on drag reduction characteristics of axisymmetric body. Acta Armamentarii, 2018, 39(6): 1151-1158 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.06.015Song Wuchao, Wang Cong, Wei Yingjie, et al. Influences of microbubble and homogeneous polymer on drag reduction characteristics of axisymmetric body. Acta Armamentarii, 2018, 39(6): 1151-1158(in Chinese)) doi: 10.3969/j.issn.1000-1093.2018.06.015
|
[6] |
郭乐扬, 阮海妮, 李文戈等. 船舶减阻表面工程技术研究进展. 表面技术, 2022, 51(9): 53-64 + 73 (Guo Leyang, Ruan Haini, Li Wenge, et al. Research progress of surface engineering technology for ship drag reduction. Surface Technology, 2022, 51(9): 53-64 + 73 (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2022.09.005Guo Leyang, Ruan Haini, Li Wenge, et al. Research progress of surface engineering technology for ship drag reduction. Surface Technology, 2022, 51(09): 53-64 + 73(in Chinese)) doi: 10.16490/j.cnki.issn.1001-3660.2022.09.005
|
[7] |
杨永嘉, 杨兆祥, 贺泳霖. 船舶水下减阻抗污涂层的研究进展. 化学通报, 2022, 85(8): 937-942 (Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(8): 937-942 (in Chinese)Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(08): 937-942(in Chinese))
|
[8] |
Toms BA. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers//Proceedings of the 1 st International Congress on Rheology North Holland. 1948, 135-141
|
[9] |
Zhang X, Duan X, Muzychka YS. Drag reduction by polymers: A brief review of the history, research progress, and prospects. International Journal of Fluid Mechanics Research, 2021, 48(6): 1-21
|
[10] |
蔡书鹏, 汪志能, 段传伟等. 表面活性剂减阻水溶液突扩流的阻力特性. 力学学报, 2018, 50(2): 274-283 (Cai Shupeng, Wang Zhineng, Duan Chuanwei, et al. Drag characteristics of a drag-reducing surfactant solution flowing over a sudden-expansion pipe. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 274-283 (in Chinese)Cai Shupeng, Wang Zhineng, Duan Chuanwei, et al. Drag characteristics of a drag-reducing surfactant solution flowing over a sudden-expansion pipe. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 274-283(in Chinese))
|
[11] |
Virk PS. Drag reduction fundamentals. Aiche Journal, 1975, 21(4): 625-656 doi: 10.1002/aic.690210402
|
[12] |
Gu Y, Yu S, Mou J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials, 2020, 13(2): 444 doi: 10.3390/ma13020444
|
[13] |
Xi L. Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Physics of Fluids, 2019, 31(12): 121302 doi: 10.1063/1.5129619
|
[14] |
Si X, Luo M, Li M, et al. Application and research progress of turbulent drag reducer in oil and gas field development. Applied Chemical Industry, 2021, 50(6): 1607-1612
|
[15] |
Li M, Zhang H, Xuan K, et al. Research progress of additive turbulence drag reduction. District Heating, 2022(2): 41-49
|
[16] |
Rubin Hillel. Drag reduction application in fire fighting systems. Journal of the Sanitary Engineering Division, 1972, 98(1): 1-9
|
[17] |
Perlin M, Dowling DR, Ceccio SL. Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. Journal of Fluids Engineering, 2016, 138(9): 091104
|
[18] |
Fontaine AA, Petri HL, Brungart TA. Velocity profile statistics in turbulent boundary layer with slot-injected polymer. Journal of Fluid Mechanics, 1992, 238: 435-466 doi: 10.1017/S0022112092001770
|
[19] |
Winkel ES, Oweis GF, Vanapalli SA, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions. Journal of Fluid Mechanics, 2009, 621: 259-288 doi: 10.1017/S0022112008004874
|
[20] |
Shah Y, Yarusevych S. Streamwise evolution of drag reduced turbulent boundary layer with polymer solutions. Physics of Fluids, 2020, 32(6): 065108 doi: 10.1063/5.0009371
|
[21] |
金善熙. 高分子减阻涂料. 海军工程大学学报, 1987, 1: 86-94 (Jin Shanxi. Polymer drag reducing coating. Journal of Naval University of Engineering, 1987, 1: 86-94 (in Chinese)Jin Shanxi. Polymer drag reducing coating. Journal of Naval University of Engineering, 1987, 1: 86-9(in Chinese))
|
[22] |
Motozawa M, Ito T, Matsumoto A, et al. Turbulent drag reduction by polymer containing paint: simultaneous measurement of skin friction and release rate//International Heat Transfer Conference. 2010, 49378: 787-795
|
[23] |
Schaaf P, Günschmann S, Hopfeld M, et al. Self-organized nanostructuring of composite coatings at high temperatures for drag reduction and self-cleaning. Surface and Coatings Technology, 2010, 205(5): 1584-1588 doi: 10.1016/j.surfcoat.2010.10.012
|
[24] |
Yang JW, Park H, Chun HH, et al. Development and performance at high Reynolds number of a skin-friction reducing marine paint using polymer additives. Ocean Engineering, 2014, 84: 183-193 doi: 10.1016/j.oceaneng.2014.04.009
|
[25] |
Waskito KT, Ogata S. Effect of agar jelly coating in rectangular pipe to flow drag reduction. Journal of Applied Fluid Mechanics, 2017, 10(4): 1161-1166
|
[26] |
秦卫华, 刘兰轩, 江英等. 3种低表面能减阻涂层的性能分析. 材料保护, 2018, 51(5): 39-41 (Qin Weihua, Liu Lanxuan, Jiang Ying, et al. Performance of three kinds of low surface energy drag-reduction coatings. Materials Protection, 2018, 51(5): 39-41 (in Chinese)Qin Weihua, Liu Lanxuan, Jiang Ying, et al. Performance of three kinds of low surface energy drag-reduction coatings. Materials Protection, 2018, 51(5): 39-41(in Chinese))
|
[27] |
豆照良, 刘峰斌. 船用防污减阻复合功能涂层的制备及性能. 船舶工程, 2018, 40(10): 1-3 + 26 (Dou Zhaoliang, Liu Fengbin. Producing and preparation of marine functional polymer coating for drag reduction and antifouling. Ship Engineering, 2018, 40(10): 1-3 + 26 (in Chinese)Dou Zhaoliang, Liu Fengbin. Producing and preparation of marine functional polymer coating for drag reduction and antifouling. Ship Engineering, 2018, 40(10): 1-3 + 26(in Chinese))
|
[28] |
Rowin WA, Asha AB, Narain R, et al. A novel approach for drag reduction using polymer coating. Ocean Engineering, 2021, 240: 109895 doi: 10.1016/j.oceaneng.2021.109895
|
[29] |
杨永嘉, 杨兆祥, 贺泳霖. 船舶水下减阻抗污涂层的研究进展. 化学通报, 2022, 85(08): 937-942 (Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(08): 937-942 (in Chinese)Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(08): 937-942(in Chinese))
|
[30] |
李茂林, 张浩, 玄克勇等. 添加剂湍流减阻的研究进展. 区域供热, 2022(217): 41-49 (Li Maolin, Zhang Hao, Xuan Keyong, et al. Research progress of additive turbulence drag reduction. District Heating, 2022(217): 41-49 (in Chinese)Li Maolin, Zhang Hao, Xuan Keyong, et al. Research progress of additive turbulence drag reduction. District Heating, 2022, No. 217(02): 41-49 (in Chinese))
|
[31] |
杨贤程, 任兰庆, 刘飞等. 水相减阻用聚氧化乙烯的研究进展. 节能, 2020, 39(4): 158-162 (Yang Xiancheng, Ren Lanqing, Liu Fei, et al. Research progress in performance and application of PEO for water phase drag reduction. Energy Conservation, 2020, 39(4): 158-162 (in Chinese)Yang Xiancheng, Ren Lanqing, Liu Fei, et al. Research progress in performance and application of PEO for water phase drag reduction. Energy Conservation, 2020, 39(04): 158-162 (in Chinese))
|
[32] |
戴若丁, 于开波, 李宏等. 聚氧化乙烯减阻效果影响研究. 辽宁化工, 2021, 50(3): 313-316 (Dai Ruoding, Yu Kaibo, Li Hong, et al. Study on drag reduction effect of polyethylene oxide. Liaoning Chemical Industry, 2021, 50(3): 313-316 (in Chinese) doi: 10.3969/j.issn.1004-0935.2021.03.011Dai Ruoding, Yu Kaibo, Li Hong, et al. Study on drag reduction effect of polyethylene oxide. Liaoning Chemical Industry, 2021, 50(03): 313-316(in Chinese)) doi: 10.3969/j.issn.1004-0935.2021.03.011
|
[33] |
田伟, 庞明军. 聚氧化乙烯水溶液旋转圆盘减阻实验研究. 东北电力大学学报, 2021, 41(4): 24-34 (Tian Wei, Pang Mingjun. Experimental study on drag reduction of polyethylene oxide solution with rotating disk apparatus. Journal of Northeast Electric Power University, 2021, 41(4): 24-34 (in Chinese)Tian Wei, Pang Mingjun. Experimental study on drag reduction of polyethylene oxide solution with rotating disk apparatus. Journal of Northeast Electric Power University, 2021, 41(04): 24-34(in Chinese))
|