MESHLESS ANALYSIS OF LINEAR BENDING AND FREE VIBRATION OF FUNCTIONALLY GRADED CARBON NANOTUBE-REINFORCED COMPOSITE PLATE ON ELASTIC FOUNDATION BASED ON IMPROVED REDDY TYPE THIRD-ORDER SHEAR DEFORMATION THEORY
-
摘要: 基于改进Reddy型3阶剪切变形理论(third-order shear deformation theory, TSDT)假设, 考虑碳纳米管(carbon nanotubes, CNTs)转向及功能梯度材料的不均匀性, 建立弹性地基上功能梯度碳纳米管增强复合材料(functionally graded carbon nanotube-reinforced composite, FG-CNTRC)板的线性弯曲和自由振动无网格分析模型. 利用改进Reddy型TSDT推导FG-CNTRC板的势能和动能, 给出弹性地基势能的表达式, 再将其分别进行叠加, 通过最小势能原理及Hamilton原理推导出弹性地基上FG-CNTRC板的线性弯曲和自由振动控制方程. 采用稳定移动克里金插值(stabilized moving Kriging interpolation, SMKI)对问题域内的节点进行离散, 该近似形函数的构造方法满足克罗内克条件, 可以直接施加边界条件. 文中首先给出基于三阶剪切变形理论的弹性地基FG-CNTRC板线性弯曲与自由振动无网格离散模型. 随后通过基准算例, 研究本文方法的有效性及精度问题. 最后数值分析了CNTs的分布形式、转向角、体积分数、地基系数、宽厚比和边界条件等对FG-CNTRC板的线性弯曲及自振频率的影响. 研究表明: 采用本文方法计算FG-CNTRC薄板、中厚板、甚至厚板的线性弯曲和自振频率均具有较高的计算精度; 随着CNTs体积分数和地基系数的增加, FG-CNTRC板结构刚度逐渐增大; FG-CTRC板结构刚度与宽厚比成正相关, 厚度增加的剪切效应会让CNTs转向角对结构刚度的影响逐渐降低.
-
关键词:
- 改进Reddy型三阶剪切变形理论 /
- 功能梯度碳纳米管增强复合材料板 /
- 弹性地基 /
- 稳定移动克里金插值 /
- 线性弯曲 /
- 自由振动
Abstract: Based on the improved Reddy type third-order shear deformation theory (TSDT), and considering the orientation of carbon nanotubes (CNTs) and the inhomogeneity of functionally gradient materials, a meshless analysis model for the linear bending and free vibration of functionally graded carbon nanotube reinforced composite (FG-CNTRC) plates on elastic foundation is established. The potential energy and kinetic energy of FG-CNTRC plate are derived by the improved Reddy type TSDT, and then the expression of the potential energy of elastic foundation is given, and then they are respectively superposed. The linear bending and free vibration control equations of FG-CNTRC plate on elastic foundation are derived by the principle of minimum potential energy and Hamilton principle. Stable moving Kriging interpolation (SMKI) is used to discretize the nodes in the problem domain. The construction method of the approximate shape function satisfies the Kronecker condition and can directly apply the boundary conditions. In this paper, a meshless discrete model of linear bending and free vibration of FG-CNTRC plate on elastic foundation based on the third-order shear deformation theory is presented. Then, the effectiveness and accuracy of the proposed method are studied by a benchmark example. Finally, the effects of CNTs distribution, orientation angle, volume fraction, foundation coefficient, width thickness ratio and boundary conditions on the linear bending and natural frequency of FG-CNTRC plate are numerically analyzed. The results show that the proposed method has a good accuracy in calculating the linear bending and natural frequencies of FG-CNTRC thin, medium-thick, and even thick plates. As the volume fraction of CNTs and the foundation coefficient increase, the stiffness of the FG-CNTRC plate structure gradually increases. The stiffness of the FG-CTRC plate structure is positively correlated with the width-thickness ratio, and the shear effect of increasing thickness gradually reduces the influence of the CNTs orientation angle on the plate stiffness. -
表 1 材料参数
Table 1. The properties of material
Parameters Matrix CNTs Poisson’s ratio νm = 0.34 $ {\nu }_{\text{12}}^{\text{CNT}} $ = 0.175 density/(kg·m−3) ρm = 1150 ρCNT = 1400 Young’s modulus/GPa Em = 2.1 ${{E} }_{\text{11} }^{\text{CNT} }$ = 5646.6,
${{E} }_{\text{22} }^{\text{CNT} }$ = 7080shear modulus/GPa — ${{G} }_{\text{12} }^{\text{CNT} }$ = 1944.5 表 2 CNTs的效能参数
Table 2. The efficiency parameters of CNTs
${{V} }_{\text{CNT} }^{\text{*} }$ η1 η2 η3 0.11 0.149 0.934 0.934 0.14 0.150 0.941 0.941 0.17 0.149 1.381 1.381 表 3 四边简支FG-CNTRC板中点无量纲挠度(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)
Table 3. Dimensionless central deflection of simply supported FG-CNTRC plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)
b/h CNT type FEM-FSDT[8] IGA-TSDT[16] Present 10 UD 3.739 × 10−3 3.717 × 10−3 3.716 × 10−3 FG-V 4.466 × 10−3 4.427 × 10−3 4.447 × 10−3 FG-O 5.230 × 10−3 5.438 × 10−3 5.430 × 10−3 FG-X 3.177 × 10−3 3.102 × 10−3 3.140 × 10−3 20 UD 3.628 × 10−3 3.624 × 10−3 3.629 × 10−3 FG-V 4.879 × 10−3 4.877 × 10−3 4.880 × 10−3 FG-O 6.155 × 10−3 6.248 × 10−3 6.243 × 10−3 FG-X 2.701 × 10−3 2.685 × 10−3 2.697 × 10−3 50 UD 1.155 1.156 1.156 FG-V 1.653 1.654 1.652 FG-O 2.157 2.163 2.158 FG-X 0.790 0.791 0.792 表 4 四边简支FG-CNTRC板无量纲基础频率(${\boldsymbol{V}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)
Table 4. Dimensionless fundamental frequencies of simply supported FG-CNTRC plate (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)
b/h CNT
typeFEM-
FSDT[8]FEM-
TSDT[32]SMKI-
FSDT (error)Present (error) 5 UD — 8.832 8.627 (2.321) 8.753 (0.894) FG-V — 8.407 8.551 (1.713) 8.504 (1.154) FG-O — 8.029 8.133 (1.295) 7.946 (1.034) FG-X — 9.122 8.877 (2.686) 9.040 (0.899) 10 UD 13.532 13.601 13.519 (0.603) 13.553 (0.353) FG-V 12.452 12.352 12.423 (0.575) 12.458 (0.858) FG-O 11.550 11.371 11.544 (1.521) 11.322 (0.431) FG-X 14.616 14.727 14.601 (0.856) 14.677 (0.340) 20 UD 17.355 17.354 17.333 (0.121) 17.320 (0.196) FG-V 15.110 15.038 15.050 (0.080) 15.081 (0.286) FG-O 13.532 13.432 13.526 (0.700) 13.405 (0.201) FG-X 19.939 19.945 19.905 (0.201) 19.914 (0.155) 50 UD 19.223 19.181 19.268 (0.454) 19.199 (0.094) FG-V 16.252 16.218 16.261 (0.265) 16.252 (0.210) FG-O 14.302 14.275 14.410 (0.946) 14.302 (0.189) FG-X 22.984 22.930 22.993 (0.275) 22.935 (0.022) 表 5 不同体积分数及地基系数下四边简支FG-CNTRC板中点无量纲挠度${{\tilde w}}$
Table 5. Dimensionless central deflections ${\tilde w}$ of simply supported FG-CNTRC plates with different volume fraction and foundation coefficient
(kw, ks) Theory $\text{}{{V} }_{\text{CNT} }^{\text{*} }$ = 0.11 $\text{}{{V} }_{\text{CNT} }^{\text{*} }$ = 0.17 UD FG-V FG-O FG-X UD FG-V FG-O FG-X uniform load (0, 0) TSDT 0.7356 0.8806 1.0705 0.6206 0.4712 0.5663 0.6844 0.4012 SSDT 0.7340 0.8792 1.0743 0.6179 0.4702 0.5655 0.6862 0.4001 present 0.7352 0.8797 1.0741 0.6214 0.4710 0.5656 0.6854 0.4013 (100, 0) TSDT 0.6983 0.8286 0.9955 0.9350 0.4556 0.5440 0.6530 0.3897 SSDT 0.6969 0.8274 0.9988 0.5910 0.4548 0.5437 0.6546 0.3887 present 0.6980 0.8278 0.9987 0.5942 0.4554 0.5437 0.6540 0.3898 (100, 50) TSDT 0.4773 0.5346 0.5991 0.4262 0.3500 0.4000 0.4557 0.3098 SSTD 0.4767 0.5341 0.6003 0.4250 0.3495 0.3997 0.4565 0.3092 present 0.4774 0.5346 0.6008 0.4266 0.3500 0.3999 0.4565 0.3100 sinusoidal load (100, 0) TSDT 0.4964 0.5869 0.7081 0.4227 0.3177 0.3769 0.4526 0.2723 SSDT 0.4953 0.5859 0.7104 0.4208 0.3170 0.3763 0.4537 0.2715 present 0.4963 0.5865 0.7102 0.4235 0.3176 0.3765 0.4532 0.2726 (100, 0) TSDT 0.4729 0.5544 0.6612 0.4056 0.3079 0.3632 0.4330 0.2651 SSDT 0.4719 0.5534 0.6633 0.4038 0.3072 0.3626 0.4340 0.2644 present 0.4728 0.5540 0.6631 0.4063 0.3078 0.3628 0.4335 0.2653 (100, 50) TSDT 0.3240 0.3583 0.4001 0.2896 0.2361 0.2674 0.3034 0.2101 SSDT 0.3219 0.3579 0.4009 0.2888 0.2357 0.2671 0.3039 0.2097 present 0.3226 0.3584 0.4011 0.2902 0.2362 0.2673 0.3038 0.2104 Notes: The data TSDT and SSDT in the table are from the analytical solution of Ref. [28] 表 6 不同宽厚比及地基系数下四边固支FG-CNTRC板中点无量纲挠度(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)
Table 6. Dimensionless central deflections of clamped FG-CNTRC plates with width-thick ratio and foundation coefficient (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)
(kw, ks) CNT type b/h 5 10 20 50 100 (0, 0) UD 3.833 × 10−4 2.119 × 10−3 1.315 × 10−2 2.627 × 10−1 3.632 FG-V 3.875 × 10−4 2.252 × 10−3 1.572 × 10−2 3.663 × 10−1 5.293 FG-O 4.251 × 10−4 2.604 × 10−3 1.934 × 10−2 4.797 × 10−1 7.040 FG-X 3.722 × 10−4 1.985 × 10−3 1.120 × 10−2 1.896 × 10−1 2.470 (100, 0) UD 3.792 × 10−4 2.056 × 10−3 1.195 × 10−2 1.434 × 10−1 0.521 FG-V 3.832 × 10−4 2.181 × 10−3 1.406 × 10−2 1.708 × 10−1 0.538 FG-O 4.201 × 10−4 2.511 × 10−3 1.693 × 10−2 1.926 × 10−1 0.544 FG-X 3.683 × 10−4 1.929 × 10−3 1.030 × 10−2 1.181 × 10−1 0.492 (100, 50) UD 3.428 × 10−4 1.592 × 10−3 6.580 × 10−3 2.900 × 10−2 0.064 FG-V 3.462 × 10−4 1.665 × 10−3 7.110 × 10−3 2.980 × 10−2 0.065 FG-O 3.759 × 10−4 1.847 × 10−3 7.730 × 10−3 3.030 × 10−2 0.065 FG-X 3.340 × 10−4 1.516 × 10−3 6.080 × 10−3 2.810 × 10−2 0.064 表 7 不同体积分数及地基系数下四边简支FG-CNTRC板的无量纲基础频率
Table 7. Dimensionless fundamental frequencies of simply supported FG-CNTRC plates with different volume fraction and foundation coefficient
$\text{}{{V} }_{\text{CNT} }^{\text{*} }$ CNT type (kw, ks) = (0, 0) (kw, ks) = (100, 0) (kw, ks) = (100, 50) TSDT SSDT Present TSDT SSDT Present TSDT SSDT Present 0.11 UD 13.55 13.57 13.55 13.88 13.90 13.89 16.82 16.83 16.81 FG-V 12.45 12.46 12.46 12.81 12.82 12.82 15.94 15.95 15.93 FG-O 11.34 11.20 11.32 11.73 11.72 11.72 15.09 15.07 15.06 FG-X 14.69 14.72 14.68 15.00 15.03 14.98 17.75 17.77 17.73 0.14 UD 14.36 14.38 14.36 14.67 14.69 14.67 17.46 17.47 17.44 FG-V 13.28 13.29 13.28 13.62 13.63 13.62 16.57 16.59 16.57 FG-O 12.13 21.10 12.12 12.50 12.48 12.48 15.67 15.66 15.65 FG-X 15.41 15.45 15.40 15.70 15.74 15.69 18.33 18.36 18.31 0.17 UD 16.83 16.85 16.84 17.10 17.12 17.10 19.53 19.54 19.52 FG-V 15.44 15.46 15.45 15.73 15.74 15.74 18.34 18.35 18.33 FG-O 14.09 14.08 14.08 14.41 14.39 14.40 17.21 17.20 17.20 FG-X 18.19 18.21 18.18 18.43 18.46 18.43 20.70 20.73 20.69 Notes: The data TSDT and SSDT in the table are from the analytical solution of Ref. [28] 表 8 不同宽厚比及地基系数下四边固支FG-CNTRC板的无量纲基础频率(${{{\boldsymbol{V}}}}_{\bf{CNT}}^{{{\boldsymbol{*}}}}$ = 0.11)
Table 8. Dimensionless fundamental frequencies of clamped FG-CNTRC plates with different width-thickness ratio and foundation coefficient (${{V}}_{\text{CNT}}^{\text{*}}$ = 0.11)
b/h (kw, ks) = (0, 0) (kw, ks) = (100, 0) (kw, ks) = (100, 50) UD FG-V FG-O FG-X UD FG-V FG-O FG-X UD FG-V FG-O FG-X 5 10.61 10.57 10.12 10.76 10.66 10.62 10.17 10.81 11.20 11.16 10.74 11.34 10 18.04 17.56 16.40 18.59 18.29 17.82 16.68 18.84 20.77 20.37 19.38 21.25 20 28.57 26.39 23.95 30.74 29.82 27.74 25.43 31.91 40.82 39.39 37.83 42.32 50 39.53 33.98 29.95 46.01 52.08 48.00 45.24 57.15 121.31 119.69 118.51 123.44 100 42.56 35.81 31.33 50.98 104.94 102.39 100.91 108.62 323.58 322.49 321.73 325.06 -
[1] Iijima S. Helical microtubles of graphitic carbon. Nature, 1991, 354: 56-58 doi: 10.1038/354056a0 [2] Thostenson ET, Ren Z, Chou T. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 2001, 61(13): 1899-1912 doi: 10.1016/S0266-3538(01)00094-X [3] Esawi AM, Farag MM. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 2007, 28(9): 2394-2401 [4] Odegard GM, Gates TS, Wise KE, et al. Constitutive modeling of nanotube-reinforced polymer composites. Composites Science and Technology, 2003, 63(11): 1671-1687 doi: 10.1016/S0266-3538(03)00063-0 [5] Seidel GD, Lagoudas DC. Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechanics of Materials, 2006, 38(8-10): 884-907 doi: 10.1016/j.mechmat.2005.06.029 [6] Shen HS. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 2009, 91(1): 9-19 doi: 10.1016/j.compstruct.2009.04.026 [7] 李煜冬, 傅卓佳, 汤卓超. 功能梯度碳纳米管增强复合材料板弯曲和模态的广义有限差分法. 力学学报, 2022, 54(2): 414-424Li Yudong, Fu Zhoujia, Tang Zhouchao. Generalized finite difference method for bending and modal analysis of functionally graded carbon nanotube-reinforced composite plates. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 414-424 (in Chinese)) [8] Zhu P, Lei ZX, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures, 2012, 94(4): 1450-1460 doi: 10.1016/j.compstruct.2011.11.010 [9] 张宇. 碳纳米管增强复合材料屈曲及自由振动行为的数值研究. [硕士论文]. 上海: 上海海洋大学, 2017Zhang Yu. Numerical study on buckling and free vibration behavior of CNT-reinforced composites. [Master Thesis]. Shanghai: Shanghai Ocean University, 2017 (in Chinese)) [10] 周涛. 功能梯度碳纳米管增强复合材料板的弯曲行为研究. [博士论文]. 北京: 中国矿业大学, 2019Zhou Tao. Bending analysis of functionally graded carbon nanotube-reinforced composite plates. [PhD Thesis]. Beijing: China University of Mining & Technology, 2019 (in Chinese)) [11] 薛婷, 秦现生, 张顺琦等. 基于一阶剪切变形理论的CNTRC板的自由振动分析. 机械工程学报, 2019, 55(24): 45-50 (Xue Ting, Qin Xiansheng, Zhang Shunqi, et al. Free vibration analysis of CNTRC plates based on first-order shear deformation theory. Journal of Mechanical Engineering, 2019, 55(24): 45-50 (in Chinese) doi: 10.3901/JME.2019.24.045Xue Ting, Qin Xiansheng, Zhang Shunqi, et al. Free vibration analysis of CNTRC plates based on first-order shear deformation theory. Journal of Mechanical Engineering, 2019, 55(24): 45-50. (in Chinese)) doi: 10.3901/JME.2019.24.045 [12] Lei ZX, Liew KM, Yu JL. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Composite Structures, 2013, 106: 128-138 doi: 10.1016/j.compstruct.2013.06.003 [13] Vuong NVD, Lee Y, Lee C. Isogeometric analysis of FG-CNTRC plates in combination with hybrid type higher-order shear deformation theory. Thin-Walled Structures, 2020, 148: 106565 doi: 10.1016/j.tws.2019.106565 [14] Zhong R, Wang Q, Tang J, et al. Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Composite Structures, 2018, 194: 49-67 doi: 10.1016/j.compstruct.2018.03.104 [15] 范健宇. 功能梯度碳纳米管增强复合材料梁、壳结构自由振动行为的数值研究. [博士论文]. 西安: 西安电子科技大学, 2019Fan Jianyu. Numerical study on the free vibration behaviors of functionally graded CNT-reinforced composite beams and shells. [PhD Thesis]. Xi’an: Xidian University, 2019 (in Chinese)) [16] Phung-Van P, Abdel-Wahab M, Liew KM, et al. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures, 2015, 123: 137-149 doi: 10.1016/j.compstruct.2014.12.021 [17] Selim BA, Zhang LW, Liew KM. Impact analysis of CNT-reinforced composite plates based on Reddy’s higher-order shear deformation theory using an element-free approach. Composite Structures, 2017, 170: 228-242 doi: 10.1016/j.compstruct.2017.03.026 [18] Shen H, Zhang C. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Materials & Design, 2010, 31(7): 3403-3411 [19] Lei ZX, Liew KM, Yu JL. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Composite Structures, 2013, 98: 160-168 doi: 10.1016/j.compstruct.2012.11.006 [20] Shams S, Soltani B. The effects of carbon nanotube waviness and aspect ratio on the buckling behavior of functionally graded nanocomposite plates using a meshfree method. Polymer Composites, 2015, 38: 531-541 [21] 曾煌棚. 基于无网格kp-Ritz法的功能梯度复合材料层合板振动与屈曲分析. [硕士论文]. 南京: 南京理工大学, 2018Zeng Huangpeng. Vibration and buckling analysis of functionally graded composite laminates based on meshless kp-Ritz method. [Master Thesis]. Nanjing: Nanjing University of Science & Technology, 2018 (in Chinese)) [22] 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese)) [23] 王东东, 张灿辉, 李庶林. Euler梁的无网格求解方法探讨. 厦门大学学报(自然科学版), 2006, 2: 206-210 (Wang Dongdong, Zhang Canhui, Li Shulin. On the meshfree analysis of Euler beam. Journal of Xiamen University (Natural Science), 2006, 2: 206-210 (in Chinese)Wang Dongdong, Zhang Canhui, Li Shulin. On the meshfree analysis of Euler beam. Journal of Xiamen University (Natural Science), 2006(02): 206-210. (in Chinese)) [24] Nguyen-Xuan H, Thai CH, Nguyen-Thoi T. Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Composites Part B: Engineering, 2013, 55: 558-574 doi: 10.1016/j.compositesb.2013.06.044 [25] Selim BA, Zhang LW, Liew KM. Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory. Composite Structures, 2016, 156: 276-290 doi: 10.1016/j.compstruct.2015.10.026 [26] Zhang LW, Lei ZX, Liew KM. An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations. Engineering Analysis with Boundary Elements, 2015, 58: 7-17 doi: 10.1016/j.enganabound.2015.03.004 [27] Zhang LW, Lei ZX, Liew KM. Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. Applied Mathematics and Computation, 2015, 256: 488-504 doi: 10.1016/j.amc.2015.01.066 [28] Wattanasakulpong N, Chaikittiratana A. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Applied Mathematical Modelling, 2015, 39(18): 5459-5472 doi: 10.1016/j.apm.2014.12.058 [29] Shams S, Soltani B. Buckling of laminated carbon nanotube-reinforced composite plates on elastic foundations using a meshfree method. Arabian Journal for Science and Engineering, 2016, 41(5): 1981-1993 doi: 10.1007/s13369-016-2051-4 [30] Nguyen DD, Lee J, Nguyen TT, et al. Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundations. Aerospace Science and Technology, 2017, 68: 391-402 doi: 10.1016/j.ast.2017.05.032 [31] Keleshteri MM, Asadi H, Aghdam MM. Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation. Thin-Walled Structures, 2019, 135: 453-462 doi: 10.1016/j.tws.2018.11.020 [32] Adhikari B, Singh BN. Dynamic response of FG-CNT composite plate resting on an elastic foundation based on higher-order shear deformation theory. Journal of Aerospace Engineering, 2019, 32(5): 4019061 doi: 10.1061/(ASCE)AS.1943-5525.0001052 [33] Gu L. Moving kriging interpolation and element-free Galerkin method. International Journal for Numerical Methods in Engineering, 2003, 56: 1-11 doi: 10.1002/nme.553 [34] Tu S, Yang HQ, Dong LL, et al. A stabilized moving Kriging interpolation method and its application in boundary node method. Engineering Analysis with Boundary Elements, 2019, 100: 14-23 doi: 10.1016/j.enganabound.2017.12.016 [35] Pasternak PL. On a new method of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstvo Literaturi Po Stroitelstuve I Arkhitekture, 1954 [36] Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. New York Washington DC: CRC Press, 2003 [37] Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science, 2007, 39(2): 315-323 doi: 10.1016/j.commatsci.2006.06.011 [38] Zhang CL, Shen HS. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Applied Physics Letters, 2006, 89(8): 081904 doi: 10.1063/1.2336622 -