EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪与新型双排开孔圆筒防波堤相互作用三维数值模拟

邓斌 尹龙斌 黄姣凤 熊凯 蒋昌波

邓斌, 尹龙斌, 黄姣凤, 熊凯, 蒋昌波. 波浪与新型双排开孔圆筒防波堤相互作用三维数值模拟. 力学学报, 2023, 55(4): 845-857 doi: 10.6052/0459-1879-22-545
引用本文: 邓斌, 尹龙斌, 黄姣凤, 熊凯, 蒋昌波. 波浪与新型双排开孔圆筒防波堤相互作用三维数值模拟. 力学学报, 2023, 55(4): 845-857 doi: 10.6052/0459-1879-22-545
Deng Bin, Yin Longbin, Huang Jiaofeng, Xiong Kai, Jiang Changbo. Three dimensional numerical simulation of wave interaction with a new type of double row perforated cylinder breakwater. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 845-857 doi: 10.6052/0459-1879-22-545
Citation: Deng Bin, Yin Longbin, Huang Jiaofeng, Xiong Kai, Jiang Changbo. Three dimensional numerical simulation of wave interaction with a new type of double row perforated cylinder breakwater. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 845-857 doi: 10.6052/0459-1879-22-545

波浪与新型双排开孔圆筒防波堤相互作用三维数值模拟

doi: 10.6052/0459-1879-22-545
基金项目: 国家重点研发项目(2021YFB2601100), 国家自然科学基金(51979015, 51839002), 湖南省自然科学基金(2021JJ30707) , 湖南省科技创新计划(2020RC3037, 20hnkj019), 湖南省教育厅资助科研项目( 20A007)和湖南省研究生科研创新项目(QL20210198)资助
详细信息
    通讯作者:

    蒋昌波, 教授, 主要研究方向为海岸动力学及其数值模拟技术. E-mail: jiangchb@csust.edu.cn

  • 中图分类号: TV139.2+6

THREE DIMENSIONAL NUMERICAL SIMULATION OF WAVE INTERACTION WITH A NEW TYPE OF DOUBLE ROW PERFORATED CYLINDER BREAKWATER

  • 摘要: 双排开孔圆筒防波堤是基于圆筒、板式结构的一种复合式新型结构型式; 基于不可压缩两相流模型建立三维数值波浪水槽, 通过RNG k-ε湍流模型进行湍流封闭, 并采用TruVOF方法捕捉自由液面, 开展波浪与双排开孔圆筒防波堤相互作用数值模拟, 探究相对排间距、开孔率对新型双排开孔圆筒防波堤消浪性能的影响, 分析了后排开孔圆筒防波堤附近的复杂水动力现象和流动特性. 结果表明, 在本文研究工况范围内, 沿程平均波高随相对排间距的增大先增大后减小, 随开孔率的增大而增大, 周期对沿程平均波高的影响没有明显规律; 当B/D = 9, e = 23.11%时, 新型双排开孔圆筒防波堤消浪效果最优, 反射系数在0.4 ~ 0.46之间, 透射系数在0.3 ~ 0.35之间, 耗散系数在0.8 ~ 0.85之间; 自由液面破碎、水气掺混、环状涡运动演化是新型双排开孔圆筒防波堤紊动耗能消波的主要原因; 相对排间距会引起后排防波堤附近涡量分布以及剪切层形态的变化, 从而导致不同的紊动特性, 影响双排开孔圆筒防波堤消浪特性. 研究结果可以为新型双排开孔圆筒防波堤工程设计与消浪机理研究提供理论支撑.

     

  • 图  1  不同测点处波高时间序列对比图

    Figure  1.  Comparison of wave height time series at different measuring points

    图  2  不同柱间距Kr试验值与数模值对比图

    Figure  2.  Comparison of Kr test value and numerical value with different column spacing

    图  3  模型布置图: (a)立面视图和(b)平面视图

    Figure  3.  Layout of the model: (a) the elevation view and (b) the vertical view

    图  4  双排开孔圆筒防波堤附近网格细节图

    Figure  4.  Mesh details near the double row perforated cylinder breakwater

    图  5  沿程平均波高变化图

    Figure  5.  Figure of mean wave height variation along the path

    5  沿程平均波高变化图 (续)

    5.  Figure of mean wave height variation along the path (continued)

    图  6  相对排间距对防波堤消浪特性的影响

    Figure  6.  The influence of relative row spacing on wave dissipation characteristics of breakwater

    图  7  开孔率对防波堤消浪特性的影响

    Figure  7.  The effect of opening rate on the wave dissipation characteristics of breakwater

    图  8  波浪与双排开孔圆筒防波堤相互作用速度云图

    Figure  8.  Velocity cloud image of wave interaction with a double row perforated cylinder breakwater

    8  波浪与双排开孔圆筒防波堤相互作用速度云图 (续)

    8.  Velocity cloud image of wave interaction with a double row perforated cylinder breakwater (continued)

    图  9  波浪与双排开孔圆筒防波堤相互作用湍动能云图

    Figure  9.  Turbulent kinetic energy cloud image of wave interaction with a double row perforated cylinder breakwater

    图  10  第二排开孔圆筒防波堤附近三维流管演化图

    Figure  10.  3D flow pipe diagram near the second row of perforated cylinder breakwater

    图  11  第二排开孔圆筒防波堤附近y方向涡量对比图

    Figure  11.  y-vorticity near the second row perforated cylinder breakwater

    图  12  Q准则下涡结构演化过程图: (a1) ~ (a5)为堤前视角和(b1) ~ (b5)为堤后视角

    Figure  12.  Evolution process of vortex structure under the Q criterion: (a1) ~ (a5) is the perspective in front of the breakwater and (b1) ~ (b5) is the perspective behind the breakwater

  • [1] Li A, Liu Y, Liu X, et al. Analytical and experimental studies on water wave interaction with a submerged perforated quarter-circular caisson breakwater. Applied Ocean Research, 2020, 101: 102267 doi: 10.1016/j.apor.2020.102267
    [2] Karthik RS, Sannasiraj SA, Sundar V. Hydrodynamic performance of pile supported breakwaters—A review//Proceedings of the 10th International Conference on Asian and Pacific Coasts, 2019, Hanoi, Vietnam. Springer Singapore, 2020: 929-935
    [3] Longuet-Higgins MS. Reviews water waves//The Mathematical Theory with Applications. New York Stroker JJ: Interscience Publishers, 1958, 4(4): 435-439
    [4] Yu X, Chwang AT. Analysis of wave scattering by submerged circular disk. Journal of Engineering Mechanics, 1993, 119(9): 1804-1817 doi: 10.1061/(ASCE)0733-9399(1993)119:9(1804)
    [5] Neelamani S, Gayathri T. Wave interaction with twin plate wave barrier. Ocean Engineering, 2006, 33(3-4): 495-516 doi: 10.1016/j.oceaneng.2005.03.009
    [6] 王国玉, 王永学, 李广伟. 多层水平板透空式防波堤消浪性能试验研究. 大连理工大学学报, 2005, 6: 865-870 (Wang Guoyu, Wang Yongxue, Li Guangwei. Experimental study of wave damping performance of multiple layer breakwater. Journal of Dalian University of Technology, 2005, 6: 865-870 (in Chinese) doi: 10.3321/j.issn:1000-8608.2005.06.018
    [7] 王晶, 程永舟, 杨小桦等. 新型透空板式防波堤消浪效果试验研究. 船舶力学, 2015, 19(Z1): 86-94 (Wang Jing, Cheng Yongzhou, Yang Xiaohua. Experimental study on wave dissipation of new plate breakwaters. Journal of Ship Mechanics, 2015, 19(Z1): 86-94 (in Chinese)
    [8] Li JB, Zhang NC, Guo CS. Numerical simulation of waves interaction with a submerged horizontal twin-plate breakwater. China Ocean Engineering, 2010, 24(4): 627-640
    [9] Li XY, Xie T, Wang Q, et al. Numerical study of the wave dissipation performance of two plate-type open breakwaters based on the Navier–Stokes equations. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(4): 1-18
    [10] 潘春昌, 王国玉, 任冰等. 圆弧板透空式防波堤消波性能试验研究. 海洋工程, 2014, 32(4): 33-40 (Pan Chunchang, Wang Guoyu, Ren Bing, et al. Experimental study on the performance of arc-plate type breakwater. The Ocean Engineering, 2014, 32(4): 33-40 (in Chinese) doi: 10.16483/j.issn.1005-9865.2014.04.012
    [11] Chen J, Wen HJ, Wang YX, et al. Experimental investigation of an annular sector OWC device incorporated into a dual cylindrical caisson breakwater. Energy, 2020, 211: 118681 doi: 10.1016/j.energy.2020.118681
    [12] Tanimoto K, Takahashi S. Design and construction of caisson breakwaters—the Japanese experience. Coastal Engineering, 1994, 22(1-2): 57-77 doi: 10.1016/0378-3839(94)90048-5
    [13] Wiegel RL. Closely spaced piles as a breakwater. Dock and Harbor Authority, 1961, 42(491): 150
    [14] Hayashi T, Hattori M, Kano T, et al. Hydraulic research on the closely spaced pile breakwater. Coastal Engineering in Japan, 1966, 9(1): 107-117 doi: 10.1080/05785634.1966.11924676
    [15] Truitt CL, Herbich JB. Transmission of random waves through pile breakwaters//Proceedings of 20th conference on Coastal Engineering. ASCE, 1986, 169: 2303-2313
    [16] Suvarna PS, Sathyanarayana AH, Umesh P, et al. Laboratory investigation on hydraulic performance of enlarged pile head breakwater. Ocean Engineering, 2020, 217: 107989 doi: 10.1016/j.oceaneng.2020.107989
    [17] Rao PSB, Mathew SE, Suvarna P, et al. Numerical investigation of wave interaction with pile breakwater//Proceedings of the International Conference on Industrial Engineering and Operations Management, Washington DC, USA, 2018: 1618-1628
    [18] 许栋, 孙家聪, 李斌等. 透空式双排圆筒防波堤消波性能数值模拟研究. 水道港口, 2022, 43(1): 16-21 (Xu Dong, Sun Jiacong, Li Bin, et al. Numerical study on of wave-damping performance of double-row cylindrical. Journal of Waterway and Harbor, 2022, 43(1): 16-21 (in Chinese) doi: 10.3969/j.issn.1005-8443.2022.01.004
    [19] Jarlan GE. A perforated vertical wall breakwater. The Dock and Harbour Authority, 1961, 486: 394-398
    [20] Rao S, Rao NBS, Sathyanarayana VS. Laboratory investigation on wave transmission through two rows of perforated hollow piles. Ocean Engineering, 1999, 26(7): 675-699 doi: 10.1016/S0029-8018(98)00021-3
    [21] Rao N, Rao PSB, Nayak K, et al. Numerical investigation on wave transmission characteristics of perforated and non-perforated pile breakwater. Journal of Physics: Conference Series, 2019, 1276(1): 012021 doi: 10.1088/1742-6596/1276/1/012021
    [22] Suvarna PS, Sathyanarayana AH, Umesh P, et al. Hydraulic performance of perforated enlarged pile head breakwaters through laboratory investigation. Ocean Engineering, 2021, 241: 110089 doi: 10.1016/j.oceaneng.2021.110089
    [23] Bai W, Feng X, Taylor RE, et al. Fully nonlinear analysis of near-trapping phenomenon around an array of cylinders. Applied Ocean Research, 2014, 44: 71-81 doi: 10.1016/j.apor.2013.11.003
    [24] Feng X, Chen XB, Dias F. A potential flow model with viscous dissipation based on a modified boundary element method. Engineering Analysis with Boundary Elements, 2018, 97: 1-15 doi: 10.1016/j.enganabound.2018.09.004
    [25] 赵玄烈, 宁德志, 康海贵等. 波浪作用下上部带有透空结构的圆筒垂向水动力特性的解析研究. 工程力学, 2017, 34(12): 239-247 (Zhao Xuanlie, Ning Dezhi, Kang Haigui, et al. Analytical study on the vertical hydrodynamics of a truncated cylinder with upper porous wall and inner column. Engineering Mechanics, 2017, 34(12): 239-247 (in Chinese)
    [26] 王广原, 王多银, 房皓等. 规则波作用下开孔圆盘阵列绕射效应研究. 工程力学, 2022, 39: 1-10 (Wang Guangyuan, Wang Duoyin, Fang Hao, et al. Study on diffraction effect of porous plate array under regular wave. Engineering Mechanics, 2022, 39: 1-10 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0379
    [27] Lin P, Liu PLF. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, 1998, 359: 239-264 doi: 10.1017/S002211209700846X
    [28] Bombardelli FA, Hirt CW, García MH, et al. Computations of curved free surface water flow on spiral concentrators. Journal of Hydraulic Engineering, 2001, 127(7): 629-631 doi: 10.1061/(ASCE)0733-9429(2001)127:7(629)
    [29] Orlanski I. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 1976, 21(3): 251-269 doi: 10.1016/0021-9991(76)90023-1
    [30] Wheele BL, Herbich JB. Wave reflection and transmission for pile arrays//Proceedings of 13th Conference on Coastal Engineering, ASCE, 1972
    [31] Goda Y, Suzuki Y. Estimation of incident and reflected waves in random wave experiments//Proceedings of the 15th Conference on Coastal Engineering Conference, 1976
    [32] Frantzis C, Grigoriadis DGE, Dimas AA. Numerical study of solitary waves past slotted breakwaters with a single row of vertical piles: wave processes and flow behavior. Ocean Engineering, 2020, 211: 107667 doi: 10.1016/j.oceaneng.2020.107667
    [33] 吴介之. 涡动力学引论. 北京: 高等教育出版社, 1993

    Wu Jiezhi. Introduction to Vortex Dynamics. Beijing: Higher Education Press, 1993 (in Chinese))
    [34] 刘超群. Liutex-涡定义和第三代涡识别方法. 空气动力学学报, 20 20, 38(3): 413-431, 478

    Liu Chaoqun. Liutex third generation of vortex definition and identification methods. Acta Aerodynamica Sinica, 2020, 38 (3): 413-431, 478 (in Chinese))
    [35] 邓斌, 王孟飞, 黄宗伟等. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报, 2020, 52(2): 408-419 (Deng Bin, Wang Mengfei, Huang Zongwei, et al. Numerical simulation of the hydrodynamic characteristics of violent aerated flows near vertical structure under wave action. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 408-419 (in Chinese) doi: 10.6052/0459-1879-20-029
    [36] Wang Y, Yang Y, Yang G, et al. DNS study on vortex and vorticity in late boundary layer transition. Communications in Computational Physics, 2017, 22(2): 441-459 doi: 10.4208/cicp.OA-2016-0183
    [37] 王义乾, 桂南. 第三代涡识别方法及其应用综述. 水动力学研究与进展 (A 辑), 2019, 34(4): 413-429 (Wang Yiqian, Gui Nan. A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics, 2019, 34(4): 413-429 (in Chinese)
    [38] Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent flows. Summer Program Center Turbulence Research, 1988: 193-208
    [39] 赵斌娟, 谢昀彤, 廖文言等. 第二代涡识别方法在混流泵内部流场中的适用性分析. 机械工程学报, 2020, 56(14): 216-223 (Zhao Binjuan, Xie Yuntong, Liao Wenyan, et al. Adaptability analysis of second generation vortex recognition method in internal flow field of mixed flow pumps. Journal of Mechanical Engineering, 2020, 56(14): 216-223 (in Chinese) doi: 10.3901/JME.2020.14.216
    [40] 刘健, 邹琳, 陶凡等. 串列双锥柱绕流流动特性的大涡模拟研究. 力学学报, 2022, 54(5): 1209-1219 (Liu Jian, Zou Lin, Tao Fan, et al. Large eddy simulation of flow past two conical cylinders in tandem arrangement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1209-1219 (in Chinese)
  • 加载中
图(14)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  104
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回