EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微槽−吸气组合控制平板边界层多模态稳定性研究

巩耕 胡伟波 武健辉 涂国华 陈坚强

巩耕, 胡伟波, 武健辉, 涂国华, 陈坚强. 微槽−吸气组合控制平板边界层多模态稳定性研究. 力学学报, 2023, 55(4): 824-834 doi: 10.6052/0459-1879-22-530
引用本文: 巩耕, 胡伟波, 武健辉, 涂国华, 陈坚强. 微槽−吸气组合控制平板边界层多模态稳定性研究. 力学学报, 2023, 55(4): 824-834 doi: 10.6052/0459-1879-22-530
Gong Geng, Hu Weibo, Wu Jianhui, Tu Guohua, Chen Jianqiang. Multi-mode stability of boundary layer over a flat plate controlled by microgrooves-suction method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 824-834 doi: 10.6052/0459-1879-22-530
Citation: Gong Geng, Hu Weibo, Wu Jianhui, Tu Guohua, Chen Jianqiang. Multi-mode stability of boundary layer over a flat plate controlled by microgrooves-suction method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 824-834 doi: 10.6052/0459-1879-22-530

微槽−吸气组合控制平板边界层多模态稳定性研究

doi: 10.6052/0459-1879-22-530
基金项目: 国家自然科学基金资助项目(92052301)
详细信息
    通讯作者:

    陈坚强, 研究员, 主要研究方向为高超声速复杂流动、数值模拟. E-mail: jq-chen@263.net

  • 中图分类号: V211.3

MULTI-MODE STABILITY OF BOUNDARY LAYER OVER A FLAT PLATE CONTROLLED BY MICROGROOVES-SUCTION METHOD

  • 摘要: 边界层转捩会使高超声速飞行器壁面摩阻和热流显著增加, 因此在高超声速飞行器设计过程中往往占据重要地位. 针对高超声速飞行器多模态转捩控制问题, 提出了微槽道(1 mm)与边界层吸气的组合控制方法, 并通过直接数值模拟和线性稳定性理论研究了Ma = 4.5平板边界层的稳定性及组合控制效果. 边界层在无控状态时, 同时存在失稳的第一、二模态波, 且二维第二模态波最不稳定; 单纯施加微槽道控制时, 边界层第二模态波会被抑制但第一模态波会被略微激发. 对比而言, 采用“微槽−吸气”组合控制后, 不仅增强了对第二模态波的抑制效果, 而且减弱了第一模态波的激发程度; 同时随着吸气强度的增加, 第二模态波不稳定区域明显收缩、频率显著增高, 而第一模态波则变化不明显. 相较于单纯的微槽道, 吸气增强了“微槽吸收”与“声波散射”作用, 因此中等吸气强度下该组合控制方法对第一和第二模态波的增长率分别实现了12.63%和28.02%的抑制效果. 以上结果表明“微槽−吸气”组合控制手段具有适用宽频、布置区域灵活的优点, 展现出了一定的多模态控制效果.

     

  • 图  1  流向速度u0的二阶导数 (R = 1000)

    Figure  1.  Comparison of profiles of second derivative of u0 (R = 1000)

    图  2  增长率$ - {\alpha _i}$R, F的变化

    Figure  2.  Change of growth rate $ - {\alpha _i}$ with function R, F

    图  3  Ma=4.5工况下中性曲线 (二维)

    Figure  3.  Neutral curves of Ma=4.5 flat plate (two-dimensional)

    图  4  150 kHz扰动波增长率与相速度

    Figure  4.  Streamwise evolution of the growth rate and phase speed of the mode at 150 kHz

    图  5  计算域示意图

    Figure  5.  Computational domain

    图  6  网格无关性检验: (a)速度和(b)密度脉动

    Figure  6.  Grid independence test: (a) velocity and (b) density fluctuation

    图  7  槽道吸气配置示意图

    Figure  7.  Schematic diagram of suction in grooves

    图  8  基本流流向速度云图

    Figure  8.  Streamwise velocity contours of base flow

    图  9  流向速度剖面

    Figure  9.  Profiles of streamwise velocity

    图  10  基本流法向速度云图 (黑色线代表激波位置)

    Figure  10.  Normal velocity contours of base flow (black lines represent the shock wave positions)

    图  11  槽道附近压力云图 (黑色箭头为流线)

    Figure  11.  Pressure contour around grooves (black arrows represent streamlines)

    图  12  流场压力脉动云图

    Figure  12.  Contours of instantaneous pressure fluctuations

    图  13  流场压力脉动图(150 kHz)

    Figure  13.  Distribution of the wall pressure fluctuations (150 kHz)

    图  14  流场扰动能云图

    Figure  14.  Contours of instantaneous energy fluctuation

    图  15  130 kHz扰动波增长率与相速度随流向的变化

    Figure  15.  Evolution of the discrete spectrum of the 130 kHz perturbations

    图  16  流场压力脉动图(130 kHz)

    Figure  16.  Distribution of the wall pressure fluctuation (130 kHz)

    图  17  流场压力脉动云图

    Figure  17.  Contours of instantaneous pressure fluctuation

    图  18  流场压力脉动图(46 kHz)

    Figure  18.  Distribution of the wall pressure fluctuation (46 kHz)

    图  19  流场扰动能云图

    Figure  19.  Contours of instantaneous energy fluctuations

    图  20  近出口位置不稳定模态的空间增长率

    Figure  20.  Spatial growth rate of unstable modes near outlet

    图  21  不稳定模态的空间增长率云图

    Figure  21.  Contours of spatial growth rate at different cases

    表  1  基本流工况设计

    Table  1.   Base flow cases design

    CaseAmplitudeGrooves location/mm
    P00
    G00(164,184)
    G10.001(164,184)
    G20.002(164,184)
    G50.005(164,184)
    G100.01(164,184)
    G200.02(164,184)
    下载: 导出CSV

    表  2  案例工况(130 kHz)

    Table  2.   Cases design (130 kHz)

    CaseAmplitudeGroovs location/mmFrequency/kHz
    P00130
    G00(164,184)130
    G100.01(164,184)130
    下载: 导出CSV
  • [1] 陈坚强, 袁先旭, 涂国华等. 高超声速边界层转捩的几点认识. 中国科学: 物理学 力学 天文学, 2019, 49(11): 121-134

    Chen Jianqiang, Yuan Xianxu, Tu Guohua, et al. Recent progresses on hypersonic boundary-layer transition. Science China: Physics, Mechanics & Astronomy, 2019, 49(11): 121-134 (in Chinese))
    [2] 陈坚强, 涂国华等. 高超声速边界层转捩研究现状与发展趋势. 空气动力学学报, 2017, 35(3): 311-337

    Chen Jianqiang, Tu guohua, et al. Hypersonic boundary layer yransition: what we know, where shall we go. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese))
    [3] Morkovin M. Transition in open flow systems a reassessment. Bulletin of the American Physical Society, 1994, 39(9): 1882-1913
    [4] Reshotko E. Transition issues for atmospheric entry. Journal of Spacecraft and Rockets, 2008, 45(2): 161-164 doi: 10.2514/1.29777
    [5] Mack LM. Special course on stability and transition of laminar flow. AGARD Report, 1984, 709-723
    [6] Yang HS, Liang H, Guo SG, et al. Research progress of hypersonic boundary layer transition control experiments. Advances in Aerodynamics, 2022, 4(1): 18-72 doi: 10.1186/s42774-022-00105-1
    [7] Zhong X, Wang X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annual Review of Fluid Mechanics, 2012, 44: 527-561 doi: 10.1146/annurev-fluid-120710-101208
    [8] Lukashevich S, Morozov S, Shiplyuk A. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer.1. Effect of the porous coating length. Journal of Applied Mechanics and Technical Physics, 2013, 54(4): 572-577
    [9] 刘强, 涂国华, 罗振兵等. 延迟高超声速边界层转捩技术研究进展. 航空学报, 2022, 43(7): 25357-025357 (Liu Qiang, Tu Guohua, Luo Zhenbing, et al. Progress in hypersonic boundary layer transition delay control. Acta Aeronauticaet Astronautica Sinica, 2022, 43(7): 25357-025357 (in Chinese)
    [10] Kimmel R. Aspects of hypersonic boundary layer transition control//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, 2003
    [11] 朱德华, 袁湘江, 沈清等. 高超声速粗糙元诱导转捩的数值模拟及机理分析. 力学学报, 2015, 47(3): 381-388 (Zhu Dehua, Yuan Xiangjiang, Shen Qing, et al. Numerical simulation and mechanism analysis of hypersonic roughness induced transition. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 381-388 (in Chinese)
    [12] Li C, Zhang Y, Lee C. Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of first mode. Physics of Fluids, 2020, 32(5): 051701-051707 doi: 10.1063/5.0008457
    [13] 李益文, 王宇天, 庞垒等. 进气道等离子体/磁流体流动控制研究进展. 力学学报, 2019, 51(2): 311-321 (Li Yiwen, Wang Yutian, Pang Lei, et al. Research progress of plasma/MHD flow control in inlet. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321 (in Chinese)
    [14] Johnson H, Gronvall J, Candler G. Reacting hypersonic boundary layer stability with blowing and suction//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009: 938
    [15] Wang X, Zhong X, Ma Y. Response of a hypersonic boundary layer to wall blowing-suction. AIAA. Journal, 2011, 49(7): 1336-1353
    [16] Wang XW, Lallande D. Hypersonic boundary-layer stabilization using steady blowing and suction: effect of forcing location, fluid dynamics//AIAA SciTech Forum and Exposition, 2020: 5034-5056
    [17] Fedorov AV, Soudakov V, Leyva IA. Stability analysis of high-speed boundary-layer flow with gas injection//7th AIAA Theoretical Fluid Mechanics Conference, 2014: 2498
    [18] Gaponov SA, Ermolaev YG, Zubkov NN, et al. Investigation of the effect of heavy gas injection into a supersonic boundary layer on laminar-turbulent transition. Fluid Dynamics, 2017, 52(6): 769-776 doi: 10.1134/S0015462817060052
    [19] Malmuth N, Fedorov A, Shalaev V, et al. Problems in high speed flow prediction relevant to control//2nd AIAA Theoretical Fluid Mechanics Meeting, 1998: 2695
    [20] Fedorov AV, Malmuth ND, Rasheed A, et al. Stabilization of hypersonic boundary layers by porous coatings. AIAA Journal, 2001, 39(4): 605-610 doi: 10.2514/2.1382
    [21] Rasheed A, Hornung H, Fedorov A, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA Journal, 2002, 40(3): 481-489 doi: 10.2514/2.1671
    [22] Zhao R, Liu T, Wen C, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control. AIAA Journal, 2018, 56(8): 2942-2946 doi: 10.2514/1.J057272
    [23] Zhao R, Wen C, Long T, et al. Spatial direct numerical simulation of the hypersonic boundary-layer stabilization using porous coatings. AIAA Journal, 2019, 57(11): 5061-5065 doi: 10.2514/1.J058467
    [24] Zhao R, Dong Y, Zhang XX, et al. Control of reflected waves with acoustic metasurfaces for hypersonic boundary-layer stabilization. AIAA Journal, 2021, 59(6): 1893-1898 doi: 10.2514/1.J060282
    [25] 郭启龙, 涂国华, 陈坚强等. 横向矩形微槽对高超边界层失稳的控制作用. 航空动力学报, 2020, 35(1): 135-143 (Guo Qilong, Tu Guohua, Chen Jianqiang et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities. Journal of Aerospace Power, 2020, 35(1): 135-143 (in Chinese)
    [26] 刘勇, 涂国华, 向星皓等. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701-194711 (Liu Yong, Tu Guohua, Xiang Xinghao et al. Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves. Acta Physics Sinica., 2022, 71(19): 194701-194711 (in Chinese) doi: 10.7498/aps.71.20220851
    [27] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave Structures and Interactions. Journal of Fluid Mechanics, 2003, 488: 31-78
    [28] Deng XG, Mao ML, Tu GH, et al. High-order and high accurate CFD methods and their applications for complex grid problems. Communications in Computational Physics, 2012, 11(4): 1081-1102 doi: 10.4208/cicp.100510.150511s
    [29] Hanifi A, Schmid PJ, Henningson DS. Transient growth in compressible boundary layer flow. Physics of Fluids, 1996, 8(3): 826-837 doi: 10.1063/1.868864
    [30] Hao J, Wen CY. Stabilization of a two-dimensional hypersonic boundary layer using a shallow cavity. AIAA Journal, 2021, 59(2): 430-438 doi: 10.2514/1.J059023
    [31] Fedorov A. Transition and stability of high-speed boundary layers. Annual Review of Fluid Mechanics, 2011, 43: 79-95 doi: 10.1146/annurev-fluid-122109-160750
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  98
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 录用日期:  2023-01-20
  • 网络出版日期:  2023-01-23
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回