A WEIGHTED-OPTIMIZATION COMPACT SCHEME FOR SHOCK-ASSOCIATED NOISE COMPUTATION AND ITS NONLINEAR EFFECT ANALYSIS
-
摘要: 在超声速流动中, 激波与湍流结构的相互作用会产生高强度的激波噪声. 激波噪声的高保真计算要求激波捕捉格式具有高阶精度、低耗散和低色散特性, 同时还要尽可能地减弱格式的非线性效应. 现有的六阶精度迎风/对称混合型加权非线性紧致格式CCSSR-HW-6在基于对称模板构造网格中心处的数值通量时引入了两级加权, 且两级加权都需要构造非线性的权系数, 因而非线性效应较强. 本文以修正波数的误差积分函数为优化目标函数, 优化了CCSSR-HW-6格式的非线性特性, 建立了加权优化紧致格式WOCS. 精度验证表明WOCS格式的精度高于5阶. 谱特性分析表明, 与原方法相比, WOCS格式的耗散误差和非线性效应显著降低. 典型激波噪声问题数值实验表明: WOCS格式不仅提高了对高频波的分辨能力, 而且显著地消除了数值解中因格式的非线性效应所导致的非物理振荡.Abstract: For the supersonic flow, the shock waves interact with the turbulent structures to generate high intensity shock-associated noise. High fidelity numerical simulation of shock-associated noise requires the shock-capturing scheme to have the properties of high-order accuracy, low dissipation and low dispersion. It is also necessary to reduce the nonlinear effect caused by the nonlinear implementation of scheme as much as possible. The existing upwind/symmetric hybrid weighted non-linear compact scheme with sixth order accuracy (called by CCSSR-HW-6 scheme, Journal of Computational Physics, 2015, 284: 133-154) introduces two-stage weighting strategy to construct the numerical flux at the cell center based on the symmetric stencil. Each stage of weighting in CCSSR-HW-6 scheme must design a nonlinear function for the weighting coefficient, which makes the nonlinear effect enhanced. In this paper, a weighted optimization compact scheme (called by WOCS scheme) is established through optimizing the nonlinear characteristics of original CCSSR-HW-6 scheme. The error integral function of modified wavenumber is chosen as the optimization objective function. The accuracy verification shows that the WOCS scheme has more than fifth order accuracy. The analysis of spectral property shows that compared to original CCSSR-HW-6 scheme, the dissipation error and the nonlinear effect of WOCS scheme are significantly reduced. Numerical experiments on several typical shock-associated noise problems show that the WOCS scheme not only improves the resolving ability of high-frequency waves, but also significantly attenuates the non-physical oscillations in numerical solution caused by the nonlinear effect.
-
Key words:
- shock-associated noise /
- shock-capturing scheme /
- compact scheme /
- nonlinear effect
-
表 1 加权优化紧致格式的数值误差和精度阶数
Table 1. Numerical errors and accuracy order of the weighted optimization compact scheme
N L1 error L1 order L∞ error L∞ order 10 2.868 × 10−3 − 4.414 × 10−3 − 20 5.357 × 10−5 5.74 8.480 × 10−5 5.70 40 1.029 × 10−6 5.70 1.619 × 10−6 5.71 80 2.156 × 10−8 5.58 3.391 × 10−8 5.58 160 5.093 × 10−10 5.40 8.003 × 10−10 5.40 -
[1] Colonius T, Lele SK. Computational aeroacoustics: progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 2004, 40: 345-416 doi: 10.1016/j.paerosci.2004.09.001 [2] Tam CKW. Recent advances in computational aeroacoustics. Fluid Dynamics Research, 2006, 38: 591-615 doi: 10.1016/j.fluiddyn.2006.03.006 [3] Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115: 200-212 doi: 10.1006/jcph.1994.1187 [4] Jiang GS, Shu CW. Efficient implementation of weighted eno schemes. Journal of Computational Physics, 1996, 126: 202-228 doi: 10.1006/jcph.1996.0130 [5] Zhang SH, Zhang HX, Shu CW. Topological structure of shock induced vortex breakdown. Journal of Fluid Mechanics, 2009, 639: 343-372 doi: 10.1017/S002211200999108X [6] Zhang SH, Zhang YT, Shu CW. Multistage interaction of a shock wave and a strong vortex. Physics of Fluids, 2005, 17: 116101 [7] 李虎, 罗勇, 韩帅斌等. 基于模态分解的轴对称超声速射流啸声产生位置数值分析. 力学学报, 2022, 54(4): 978-993 (Li Hu, Luo Yong, Han Shuaibin, et al. Numerical study on the generation position of screech tone in axisymmetric supersonic jet based on modal decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 978-993 (in Chinese) doi: 10.6052/0459-1879-21-609 [8] 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究. 力学学报, 2012, 44(4): 673-686 (Li Hu, Zhang Shuhai. Direct numerical simulation of decaying compressible isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 673-686 (in Chinese) doi: 10.6052/0459-1879-11-353 [9] 刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究. 力学学报, 2013, 45(1): 61-75 (Liu Xuliang, Zhang Shuhai. Direct numerical simulation of the interaction of 2 D shock wave and shear layer. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 61-75 (in Chinese) doi: 10.6052/0459-1879-12-106 [10] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207: 542-567 doi: 10.1016/j.jcp.2005.01.023 [11] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227: 3101-3211 [12] Wu CH, Wu L, Zhang SH. A smoothness indicator constant for sine functions. Journal of Computational Physics, 2020, 419: 109661 doi: 10.1016/j.jcp.2020.109661 [13] Martin MP, Taylor EM, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220: 270-289 doi: 10.1016/j.jcp.2006.05.009 [14] Hu XY, Wang Q, Adams, NA. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229: 8952-8965 doi: 10.1016/j.jcp.2010.08.019 [15] Zhang SH, Shu CW. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. Journal of Scientific Computing, 2007, 31: 273-305 doi: 10.1007/s10915-006-9111-y [16] Fu L, Hu XY, Adams, NA. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 2016, 305: 333-359 doi: 10.1016/j.jcp.2015.10.037 [17] Lele SK. Compact finite-difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103: 16-42 doi: 10.1016/0021-9991(92)90324-R [18] Deng XG, Zhang HX. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165: 22-44 doi: 10.1006/jcph.2000.6594 [19] Zhang SH, Jiang SF, Shu CW. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008, 227: 7294-7321 doi: 10.1016/j.jcp.2008.04.012 [20] Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes. Journal of Computational Physics, 2013, 248: 235-256 doi: 10.1016/j.jcp.2013.04.014 [21] Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes. Journal of Computational Physics, 2015, 284: 133-154 doi: 10.1016/j.jcp.2014.12.027 [22] Li H, Luo Y, Zhang SH. Assessment of upwind/symmetric Weno schemes for direct numerical simulation of screech tone in supersonic Jet. Journal of Scientific Computing, 2021, 87: 3 doi: 10.1007/s10915-020-01407-6 [23] Li Q, Guo QL, Sun D, et al. A fourth-order symmetric weno scheme with improved performance by new linear and nonlinear optimizations. Journal of Scientific Computing, 2017, 71: 109-143 doi: 10.1007/s10915-016-0293-7 [24] Lardjane N. Étude théorique et numérique des écoulements cisaillés libres à masse volumique fortement variable. [PhD Thesis]. Université d’Orléans, 2002. [25] Weirs VG. A numerical method for the direct simulation of compressible turbulence. [PhD Thesis]. University of Minnesota, 1998 [26] Nathan JM, Datta VG. A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows. AIAA-2011-0366 [27] Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219: 489-497 doi: 10.1016/j.jcp.2006.07.009 [28] Zhao S, Lardjane N, Fedioun I. Comparison of improved finite-difference weno schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Computers and Fluids, 2014, 95: 74-87 doi: 10.1016/j.compfluid.2014.02.017 [29] Harten A, Lax PD, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review. 1983, 25(1): 35-61 [30] Casper J, Carpenter MH. Computational considerations for the simulation of shock-induced sound. SIAM Journal on Scientific Computing, 1998, 19(3): 813-828 doi: 10.1137/S1064827595294101 [31] Titarev VA, Toro EF. Finite-volume WENO schemes for three dimensional conservation laws. Journal of Computational Physics, 2004, 201(1): 238-260 doi: 10.1016/j.jcp.2004.05.015 [32] Adams AN, Shariff K. A High-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. Journal of Computational Physics, 1996, 127: 27-51 doi: 10.1006/jcph.1996.0156 [33] Pirozzoli S. Conservative hybrid Compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 2002, 178: 81-117 doi: 10.1006/jcph.2002.7021 [34] Inoue O, Hattori Y. Sound generation by shock-vortex interactions. Journal of Fluid Mechanics, 1999, 380: 81-116 doi: 10.1017/S0022112098003565 [35] Zhao FX, Ji X, Shyy W, et al. An acoustic and shock wave capturing compact high-order gas-kinetic scheme with spectral-like resolution. International Journal of Computational Fluid Dynamics, 2020, 34(10): 731-756 doi: 10.1080/10618562.2020.1821879 -