EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜圆柱结构涡激振动研究进展

徐万海 马烨璇

徐万海, 马烨璇. 倾斜圆柱结构涡激振动研究进展. 力学学报, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186
引用本文: 徐万海, 马烨璇. 倾斜圆柱结构涡激振动研究进展. 力学学报, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186
Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186
Citation: Xu Wanhai, Ma Yexuan. Research progress on vortex-induced vibration of inclined cylindrical structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2641-2658 doi: 10.6052/0459-1879-22-186

倾斜圆柱结构涡激振动研究进展

doi: 10.6052/0459-1879-22-186
基金项目: 国家自然科学基金(51979163, U2106223)和中国工程院院地合作重大咨询项目(2021DFZD2)资助
详细信息
    作者简介:

    徐万海, 教授, 主要研究方向: 涡激振动及振动控制. E-mail: xuwanhai@tju.edu.cn

    马烨璇, 博士, 主要研究方向: 涡激振动及振动控制. E-mail: mayexuan@tju.edu.cn

  • 中图分类号: TV312

RESEARCH PROGRESS ON VORTEX-INDUCED VIBRATION OF INCLINED CYLINDRICAL STRUCTURES

  • 摘要: 圆柱结构涡激振动现象在生活中十分常见, 如海洋工程中的管道、土木工程中的高耸建筑、桥梁斜拉索, 核工程中的热交换器等频繁受到涡激振动影响, 诱发结构的疲劳损伤, 甚至破坏失效. 现阶段, 人们对垂直来流作用下圆柱结构涡激振动机理已有较为全面的认识. 然而, 当圆柱倾斜置于流场中, 结构后缘的尾流形态与垂直放置差异显著, 结构与流体的耦合作用机理更为复杂. 为简化倾斜圆柱涡激振动问题, 提出了不相关原则, 来流速度被分解为垂直圆柱结构轴向和平行圆柱结构轴向的两个速度分量, 仅考虑垂直结构轴向速度分量的影响, 忽略平行结构轴向速度分量的影响. 近年来, 针对倾斜圆柱涡激振动及不相关原则的适用性, 出现了大量实验和数值模拟研究成果. 为了深化对倾斜圆柱结构涡激振动相关机理的认知, 本文全面阐述了倾斜圆柱结构涡激振动响应规律、尾迹流场模式和流体力特性等方面的研究进展, 分析了不相关原则的适用范围, 探讨了倾斜圆柱结构涡激振动抑制措施, 并对今后该领域的研究进行了力所能及的展望.

     

  • 图  1  垂直圆柱与倾斜圆柱结构示意图

    Figure  1.  Schematic diagram of vertical and inclined cylinders

    图  2  St随倾角a的变化

    Figure  2.  St versus the inclination angle

    图  3  文献[48]观测到的倾斜圆柱尾流模式

    Figure  3.  Wake patterns of flow around an inclined cylinder in Ref. [48]

    图  4  倾斜圆柱尾流模式区域[48]

    Figure  4.  Wake pattern regions of flow around an inclined cylinder[48]

    图  5  文献[68]数值模拟的倾斜圆柱尾流模式

    Figure  5.  Wake patterns of flow around an inclined cylinder in Ref. [68]

    图  6  倾斜固定圆柱绕流的流体力系数[53]

    Figure  6.  Fluid force coefficients of an inclined stationary cylinder [53]

    图  7  倾斜刚性圆柱VIV的横流向位移[90]

    Figure  7.  Cross-flow displacements of an inclined rigid cylinder undergoing VIV [90]

    图  8  倾斜刚性圆柱VIV的流体力系数[90]

    Figure  8.  Fluid force coefficients of an inclined rigid cylinder undergoing VIV[90]

    图  9  倾斜柔性圆柱VIV的位移云图、位移均方根分布和运动轨迹[104]

    Figure  9.  Displacement contour, distribution of the RMS of the displacement, x-y trajectory of an inclined flexible cylinder undergoing VIV [104]

    图  10  倾斜柔性圆柱VIV的振动位移[104]

    Figure  10.  Displacements of an inclined flexible cylinder undergoing VIV [104]

    图  11  倾斜柔性圆柱VIV的尾流形态[93]

    Figure  11.  Wake flow of an inclined flexible cylinder undergoing VIV [93]

    图  12  倾斜柔性圆柱VIV的附加质量系数[104]

    Figure  12.  Add mass coefficients of an inclined flexible cylinder undergoing VIV[104]

    图  13  螺旋列板的抑制效率[111]

    Figure  13.  Suppression efficiency of helical strakes[111]

    图  14  控制杆的抑制效率[121]

    Figure  14.  Suppression efficiency of control rods[121]

  • [1] Griffin OM, Ramberg SE. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology, 1982, 104: 2-13 doi: 10.1115/1.3230377
    [2] Bearman PW. Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics, 1984, 16: 195-222 doi: 10.1146/annurev.fl.16.010184.001211
    [3] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447 doi: 10.1016/j.jfluidstructs.2004.02.005
    [4] Gabbai RD, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 2005, 282: 575-616 doi: 10.1016/j.jsv.2004.04.017
    [5] Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735 doi: 10.1016/j.jweia.2007.06.019
    [6] Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011, 27: 648-658 doi: 10.1016/j.jfluidstructs.2011.03.021
    [7] Wu XD, Ge F, Hong YS. A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and Structures, 2012, 28: 292-308 doi: 10.1016/j.jfluidstructs.2011.11.010
    [8] 及春宁, 李非凡, 陈威霖等. 圆柱涡激振动研究进展与展望. 海洋技术学报, 2015, 34(1): 106-118 (Ji Chunning, Li Feifan, Chen Weilin, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders. Journal of Ocean Technology, 2015, 34(1): 106-118 (in Chinese)
    [9] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47: 25-91 (Cheng Weimin, Fu Yiqin, Guo Shuangxi, et al. Fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders. Advances in Mechanics, 2017, 47: 25-91 (in Chinese) doi: 10.6052/1000-0992-16-005
    [10] Liu GJ, Li HY, Qiu ZZ, et al. A mini review of recent progress on vortex-induced vibrations of marine risers. Ocean Engineering, 2020, 195: 106704 doi: 10.1016/j.oceaneng.2019.106704
    [11] Wang JS, Fan DX, Lin K. A review on flow-induced vibration of offshore circular cylinders. Journal of Hydrodynamics, 2020, 32: 415-440 doi: 10.1007/s42241-020-0032-2
    [12] Blevins RD. Flow-Induced Vibration. 2nd ed. Florida: Krieger Publishing Company, 1990
    [13] White FM. Fluid Mechanics. 5th ed. New York: McGraw Hill, 2005
    [14] Norberg C. Fluctuating lift on a circular cylinder: Review and new measurements. Journal of Fluids Structures, 2003, 17: 57-96 doi: 10.1016/S0889-9746(02)00099-3
    [15] Ji CN, Xiao Z, Wang YZ, et al. Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method. International Journal of Computational Fluid Dynamics, 2011, 25: 207-221 doi: 10.1080/10618562.2011.577034
    [16] Khalak A, Williamson CHK. Motions, forces and mode transitions in vortex-vibrations at low mass-damping. Journal of Fluids and Structures, 1999, 13: 813-851 doi: 10.1006/jfls.1999.0236
    [17] Govardhan RN, Williamson CHK. Defining the ‘modified griffin plot’ in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping. Journal of Fluids Mechanics. 2006, 561: 147-180
    [18] Raghavan K, Bernitsas MM. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering, 2011, 38: 719-731 doi: 10.1016/j.oceaneng.2010.09.003
    [19] Blevins RD, Coughran CS. Experimental investigation of vortex- induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. Journal of Fluids Engineering, 2009, 131: 101202 doi: 10.1115/1.3222904
    [20] Prasanth TK, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. Journal of Fluids Mechanics, 2007, 594: 463-491
    [21] Feng CC. The measurement of vortex-Induced effects on flow past stationary and oscillating circular D-section cylinders. [Master Thesis]. British Columbia: University of British Columbia, 1968
    [22] Khalak A, Williamson CHK. Dynamics of a hydro elastic cylinder with very low mass and damping. Journal of Fluids and Structures, 1996, 10: 455-472 doi: 10.1006/jfls.1996.0031
    [23] Govardhan R, Williamson CHK. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluids Mechanics, 2000, 420: 85-130 doi: 10.1017/S0022112000001233
    [24] 潘志远, 崔维成, 刘应中. 低质量-阻尼因子圆柱体的涡激振动预报模型. 船舶力学, 2005, 9(5): 115-124 (Pan Zhiyuan, Cui Weicheng, Liu Yingzhong. A predicting model for self-excited VIV of a circular cylinder at low mass-damping. Journal of Ship Mechanics, 2005, 9(5): 115-124 (in Chinese) doi: 10.3969/j.issn.1007-7294.2005.05.014
    [25] Griffin OM. Vortex-excited cross-flow vibrations of a single cylindrical tube. Journal of Pressure Vessel Technology, 1980, 102: 158-166 doi: 10.1115/1.3263315
    [26] Skop RA, Balasubramanian S. A new twist on an old model for vortex-excited vibrations. Journal of Fluids and Structures, 1997, 11: 395-412 doi: 10.1006/jfls.1997.0085
    [27] Jauvtis N, Williamson CHK. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. Journal of Fluid Mechanics, 2004, 509: 23-62 doi: 10.1017/S0022112004008778
    [28] 黄智勇, 潘志远, 崔维成. 两向自由度低质量比圆柱涡激振动的数值计算. 船舶力学, 2007, 11(1): 1-9 (Huang Zhiyong, Pan Zhiyuan, Cui Weicheng. Numerical simulation of VIV of a circular cylinder with two degrees of freedom and low mass-ratio. Journal of Ship Mechanics, 2007, 11(1): 1-9 (in Chinese) doi: 10.3969/j.issn.1007-7294.2007.01.001
    [29] Vikestad K, Vandiver JK, Larsen CM. Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures, 2000, 14: 1071-1088 doi: 10.1006/jfls.2000.0308
    [30] Branković M, Bearman PW. Measurements of transverse forces on circular cylinders undergoing vortex-induced vibration. Journal of Fluids and Structures, 2006, 22: 829-836 doi: 10.1016/j.jfluidstructs.2006.04.022
    [31] Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders. [PhD Thesis]. Massachusetts: Woods Hole Oceanographic Institution, 1993
    [32] Aronsen KH. An experimental investigation of inline and combined in-line and cross-flow vortex induced vibrations. [PhD Thesis]. Trondheim: Norwegian University of Science and Technology, 2007
    [33] Bourguet R, Karniadakis G, Triantafyllou MS. Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluids Mechanics, 2011, 677: 342-382 doi: 10.1017/jfm.2011.90
    [34] Vandiver JK, Jaiswal V, Jhingran V. Insights on vortex-induced, traveling waves on long risers. Journal of Fluids and Structures, 2009, 25: 641-653 doi: 10.1016/j.jfluidstructs.2008.11.005
    [35] Chaplin JR, Bearman PW, Huera-Huarte FJ, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures, 2005, 21: 3-24 doi: 10.1016/j.jfluidstructs.2005.04.010
    [36] Song JN, Lu L, Teng B, et al. Laboratory tests of vortex-induced vibrations of a long flexible riser pipe subjected to uniform flow. Ocean Engineering, 2011, 38: 1308-1322 doi: 10.1016/j.oceaneng.2011.05.020
    [37] Vandiver JK, Ma L, Rao Z. Revealing the effects of damping on the flow-induced vibration of flexible cylinders. Journal of Sound and Vibration, 2018, 433: 29-54 doi: 10.1016/j.jsv.2018.07.009
    [38] 马烨璇, 宋志友, 徐万海. 基于能量传递规律的海洋立管涡激振动抑制研究. 力学学报, 2022, 54(4): 1-11 (Ma Yexuan, Song Zhiyou, Xu Wanhai. Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1-11 (in Chinese) doi: 10.6052/0459-1879-21-664
    [39] Song LJ, Fu SX, Cao J, et al. An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures, 2016, 63: 325-350 doi: 10.1016/j.jfluidstructs.2016.03.006
    [40] 徐万海, 马烨璇, 罗浩等. 柔性圆柱涡激振动流体力系数识别及其特性. 力学学报, 2017, 49(4): 818-827 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Identification and characteristics of hydrodynamic coefficients for a flexible cylinder undergoing vortex-induced vibration. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 818-827 (in Chinese) doi: 10.6052/0459-1879-16-263
    [41] 徐万海, 马烨璇, 张书海等. 柔性圆柱涡激振动流体力系数识别方法. 中国海洋平台, 2019, 34(1): 1-8 (Xu Wanhai, Ma Yexuan, Zhang Shuhai, et al. Identification methods for hydrodynamic coefficients of flexible cylinder subject to vortex-induced vibration. China Offshore Platform, 2019, 34(1): 1-8 (in Chinese) doi: 10.3969/j.issn.1001-4500.2019.01.001
    [42] Wu J, Lie H, Larsen CM, et al. Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses. Journal of Fluids and Structures, 2016, 63: 238-258 doi: 10.1016/j.jfluidstructs.2016.03.001
    [43] Hoerner SF. Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. New Jersey: Midland Park, 1958
    [44] Friehe C, Schwarz W. Deviations from the cosine law for yawed cylindrical anemometer sensors. Journal of Applied Mechanics, 1968, 35: 655-662 doi: 10.1115/1.3601288
    [45] Hanson AR. Vortex shedding from yawed cylinders. AIAA Journal, 1966, 4(4): 738-740 doi: 10.2514/3.3531
    [46] Van Atta CW. Experiments on vortex shedding from yawed circular cylinders. AIAA Journal, 1968, 6: 931-933 doi: 10.2514/3.4630
    [47] Roshko A. On the development of turbulent wakes from vortex streets. [PhD Thesis]. California: California Institute of Technology Calif, 1952
    [48] Ramberg SE. The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. Journal of Fluid Mechanics, 1983, 128: 81-107 doi: 10.1017/S0022112083000397
    [49] Surry D, Surry J. The Effect of Inclination on the Strouhal Number and Other Wake Properties of Circular Cylinders at Subcritical Reynolds Numbers. Toronto: University of Toronto, 1967
    [50] Thakur A, Liu X, Marshall JS. Wake flow of single and multiple yawed cylinders. Journal of Fluids Engineering, 2004, 126: 861-870 doi: 10.1115/1.1792276
    [51] Zhou T, Razali SFM, Zhou Y, et al. Dependence of the wake on inclination of a stationary cylinder. Experiments Fluids, 2009, 46: 1125-1138 doi: 10.1007/s00348-009-0625-6
    [52] Willden RHJ, Guerbi M. Vortex dynamics of stationary and oscillating cylinders in yawed flow//IUTAM Symposium on Bluff Body Wakes and Vortex-induced Vibration (BBVIV-6). Capri, 2010-6-22-25: 47-54
    [53] Zhao M, Cheng L, Zhou TM. Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. Journal of Fluids and Structures, 2009, 25: 831-847 doi: 10.1016/j.jfluidstructs.2009.02.004
    [54] Thapa J, Zhao M, Zhou T, et al. Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular cylinder near a plane boundary at a Reynolds number of 500. Ocean Engineering, 2014, 87: 25-39 doi: 10.1016/j.oceaneng.2014.05.014
    [55] Liang H, Jiang SY, Duan RQ. Spanwise characteristics of flow crossing a yawed circular cylinder of finite length. Procedia Engineering, 2015, 126: 83-87 doi: 10.1016/j.proeng.2015.11.183
    [56] 高洋洋, 张演明, 刘彩等. 不同雷诺数下倾斜圆柱绕流三维数值模拟研究. 海洋工程, 2020, 38(1): 86-100 (Gao Yangyang, Zhang Yanming, Liu Cai, et al. Three-dimensional numerical simulation on flow past an inclined circular cylinder at different Reynolds numbers. The Ocean Engineering, 2020, 38(1): 86-100 (in Chinese)
    [57] Griffin OM. A universal Strouhal number for the ‘locking-on’ of vortex shedding to the vibrations of bluff cylinders. Journal of Fluid Mechanics, 1978, 85: 591-606 doi: 10.1017/S0022112078000804
    [58] Griffin OM. Universal similarity in the wakes of stationary and vibrating bluff structures. Journal of Fluids Engineering, 1981, 103: 52-58 doi: 10.1115/1.3240780
    [59] Slaouti A, Gerrard JH. An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers. Journal of Fluid Mechanics, 1981, 112: 297-314 doi: 10.1017/S0022112081000414
    [60] Gatto A, Ahmed NA, Archer RD. Investigation of upstream end effect on the flow characteristics of a yawed circular cylinders. The Aeronautical Journal, 2000, 104: 125-128
    [61] Jordan SA. Transition to turbulence in the separated shear layers of yawed circular cylinders. International Journal of Heat and Fluid Flow, 2010, 31: 489-498 doi: 10.1016/j.ijheatfluidflow.2010.04.009
    [62] Hogan JD, Hall JW. The spanwise dependence of vortex-shedding from yawed circular cylinders. Journal of Pressure Vessel Technology, 2010, 132: 031301 doi: 10.1115/1.4000732
    [63] Zhou T, Wang H, Razali SFM, et al. Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Physics of Fluids, 2010, 22: 015108
    [64] Zhao M, Thapa J, Cheng L, et al. Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, 2013, 25: 014105 doi: 10.1063/1.4788934
    [65] Najafi L, Firat E, Akilli H. Time-averaged near-wake of a yawed cylinder. Ocean Engineering, 2016, 113: 335-349 doi: 10.1016/j.oceaneng.2015.12.045
    [66] Matsuzaki K, Shingai M, Haramoto Y, et al. Visualization of three-dimensional flow structures in the wake of an inclined circular cylinder. Journal of Visualization, 2004, 7: 309-316 doi: 10.1007/BF03181535
    [67] Wang H, Razali SFM, Zhou T, et al. Streamwise evolution of an inclined cylinder wake. Experiment in Fluids, 2011, 51: 553-570 doi: 10.1007/s00348-011-1068-4
    [68] Wang R, Cheng S, Ting DSK. Effect of yaw angle on flow structure and cross-flow force around a circular cylinder. Physics of Fluids, 2019, 31: 014107 doi: 10.1063/1.5079750
    [69] Kawamura T, Hayashi T. Computation of flow around a yawed circular cylinder. Transactions of the Japan Society of Mechanical Engineers Series B, 1995, 37: 229-236
    [70] Shirakashi M, Hasegawa A, Wakiya S. Effect of the secondary flow on Karman vortex shedding from a yawed cylinder. Transactions of the Japan Society of Mechanical Engineers Series B, 1986, 51: 1124-1128
    [71] Marshall JS. Wake dynamics of a yawed cylinder. Journal of Fluids Engineering, 2003, 125: 97-103 doi: 10.1115/1.1523069
    [72] Dhanak MR. The stability of an expanding circular vortex layer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 375: 443-451
    [73] Dritschel DG. On the stabilization of a two-dimensional vortex strip by adverse shear. Journal of Fluids Mechanics, 1989, 206: 193-221 doi: 10.1017/S0022112089002284
    [74] Lessen M, Singh PJ, Paillet F. The instability of a trailing line vortex. Part 1. Inviscid theory. Journal of Fluids Mechanics, 1974, 63: 753-763 doi: 10.1017/S0022112074002175
    [75] Mayer EW, Powell KG. Viscous and inviscid instabilities of a trailing vortex. Journal of Fluids Mechanics, 1992, 245: 91-114 doi: 10.1017/S0022112092000363
    [76] Hayashi T, Kawamura T. Non-uniformity in a flow around a yawed circular cylinder. Flow Measurement and Instrumention, 1995, 6: 33-39 doi: 10.1016/0955-5986(95)93456-5
    [77] 杜晓庆, 费陈杰, 况中华等. 展向剪切流作用下斜置圆柱气动特性研究. 振动与冲击, 2014, 33(21): 31-37 (Du Xiaoqing, Fei Chenjie, Kuang Zhonghua, et al. Aerodynamic characteristics of an inclined circular cylinder in a span-wise linear shear flow. Journal of Vibration and Shock, 2014, 33(21): 31-37 (in Chinese) doi: 10.13465/j.cnki.jvs.2014.21.006
    [78] 汪冠亚. 斜置圆柱的试验方法和气动力特性试验. [博士论文]. 石家庄: 石家庄铁道大学, 2018

    Wang Guanya. Test method and experimental study on characteristics of aerodynamic of forces for a yawed circular cylinder. [PhD Thesis]. Shijiazhuang: Shijiazhuang Tiedao University, 2018 (in Chinese))
    [79] Yeo D, Jones NP. Aerodynamic forces induced by vertically oscillating incoming flow on a yawed horizontal circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104: 188-195
    [80] Shao WY, Zhang YP. Drag force on a free surface-piercing yawed circular cylinder in steady flow. Journal of Fluids and Structures, 2013, 43: 145-163 doi: 10.1016/j.jfluidstructs.2013.09.007
    [81] Vakil A, Green SI. Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds number. Computers & Fluids, 2009, 38: 1771-1781
    [82] Lucor D, Karniadakis GE. Effects of oblique inflow in vortex-induced vibrations. Flow, Turbulence and Combustion, 2003, 71: 375-389 doi: 10.1023/B:APPL.0000014929.90891.4d
    [83] Lam K, Lin YF, Zou L, et al. Investigation of turbulent flow past a yawed wavy cylinder. Journal of Fluids and Structures, 2010, 26: 1078-1097
    [84] Nakagawa K, Kishida K, Igarashi K. Vortex-induced oscillation and lift of yawed circular cylinders in cross-flow. Journal of Fluids and Structures, 1998, 12: 759-777 doi: 10.1006/jfls.1998.0157
    [85] Franzini GR, Fujarra ALC, Meneghini JR, et al. Experimental investigation of vortex-induced vibration on rigid, smooth and inclined cylinders. Journal of Fluids and Structures, 2009, 25: 742-750 doi: 10.1016/j.jfluidstructs.2009.01.003
    [86] Zhao M. The validity of the independence principle applied to the vortex-induced vibration of an inclined cylinder in steady flow. Applied Ocean Research, 2015, 53: 155-160 doi: 10.1016/j.apor.2015.08.005
    [87] Wu X, Jafari M, Sarkar P, et al. Verification of DES for flow over rigidly and elastically-mounted circular cylinders in normal and yawed flow. Journal of Fluids and Structures, 2020, 94: 102895 doi: 10.1016/j.jfluidstructs.2020.102895
    [88] Jain A, Modarres-Sadeghi Y. Vortex-induced vibrations of a flexibly-mounted inclined cylinder. Journal of Fluids and Structures, 2013, 43: 28-40 doi: 10.1016/j.jfluidstructs.2013.08.005
    [89] Jain A. Vortex-induced vibrations of an inclined cylinder in flow. [Master Thesis]. Massachusetts: University of Massachusetts Amherst, 2014
    [90] Franzini GR, Gonçalves RT, Meneghini JR, et al. One and two degrees-of-freedom vortex-induced vibration experiments with yawed cylinders. Journal of Fluids and Structures, 2013, 42: 401-420 doi: 10.1016/j.jfluidstructs.2013.07.006
    [91] Zang ZP, Zhou TM. Transverse vortex-induced vibration of a near-wall cylinder under oblique flows. Journal of Fluids and Structures, 2017, 68: 370-389 doi: 10.1016/j.jfluidstructs.2016.11.021
    [92] Esfahani VN, Hanson RE, Ekmekci A. Near-wake of a yaw-oscillating circular cylinder at subcritical flow. Journal of Fluids and Structures, 2022, 110: 103511 doi: 10.1016/j.jfluidstructs.2022.103511
    [93] 邢国源. 倾斜流与剪切流中柔性立管涡激振动数值模拟. [硕士论文]. 天津: 天津大学, 2017

    Xing Guoyuan. Numerical simulations of vortex-induced vibration of flexible riser in oblique flow and shear flow. [Master Thesis]. Tianjin: Tianjin University, 2017 (in Chinese))
    [94] 及春宁, 邢国源, 张力等. 倾斜来流作用下柔性立管涡激振动的数值模拟. 哈尔滨工程大学学报, 2018, 39(2): 324-331 (Ji Chunning, Xing Guoyuan, Zhang Li, et al. Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow. Journal of Harbin Engineering University, 2018, 39(2): 324-331 (in Chinese)
    [95] Bourguet R, Karniadakis GE, Triantafyllou MS. On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60°. Journal of Fluids and Structures, 2015, 53: 58-69 doi: 10.1016/j.jfluidstructs.2014.09.005
    [96] Bourguet R, Triantafyllou MS. Vortex-induced vibrations of a flexible cylinder at large inclination angle. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2015, 373: 20140108 doi: 10.1098/rsta.2014.0108
    [97] King R. Vortex excited oscillations of yawed circular cylinders. Journal of Fluids Engineering, 1977, 99: 495-501 doi: 10.1115/1.3448825
    [98] Hover FS, Miller SN, Triantafyllou MS. Vortex-induced oscillations in inclined cables. Journal of Wind Engineering, 1997, 69: 203-211
    [99] Jakobsen JB, Andersen TL, Macdonald JHG, et al. Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 100-112 doi: 10.1016/j.jweia.2012.04.025
    [100] 徐万海, 马烨璇, 罗浩等. 小倾角倾斜柔性圆柱涡激振动实验研究. 哈尔滨工程大学学报, 2017, 38(2): 195-200 (Xu Wanhai, Ma Yexuan, Luo Hao, et al. Vortex-induced vibration of an inclined flexible cylinder with a small yaw angle. Journal of Harbin Engineering University, 2017, 38(2): 195-200 (in Chinese) doi: 10.11990/jheu.201511035
    [101] 徐万海, 马烨璇, 杜杰等. 45°大倾角倾斜柔性圆柱涡激振动不相关原则实验验证. 振动与冲击, 2017, 36(7): 176-183 (Xu Wanhai, Ma Yexuan, Du Jie, et al. Test verification for independence principle applied in vortex-induced vibration of a flexible cylinder inclined at 45°. Journal of Vibration and Shock, 2017, 36(7): 176-183 (in Chinese) doi: 10.13465/j.cnki.jvs.2017.07.027
    [102] Seyed-Aghazadeh B, Modarres-Sadeghi Y. An experimental study to investigate the validity of the independence principle for vortex-induced vibration of a flexible cylinder over a range of angles of inclination. Journal of Fluids and Structures, 2018, 78: 343-355 doi: 10.1016/j.jfluidstructs.2018.01.004
    [103] Han QH, Ma YX, Xu WH, et al. Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations. Journal of Sound and Vibration, 2017, 394: 306-320 doi: 10.1016/j.jsv.2017.01.034
    [104] Xu WH, Ma YX, Ji CN, et al. Laboratory measurements of vortex-induced vibrations of a yawed flexible cylinder at different yaw angles. Ocean Engineering, 2018, 154: 27-42 doi: 10.1016/j.oceaneng.2018.01.113
    [105] Han QH, Ma YX, Xu WH, et al. Hydrodynamic characteristics of an inclined slender flexible cylinder subjected to vortex-induced vibration. International Journal of Mechanical Sciences, 2018, 148: 352-365 doi: 10.1016/j.ijmecsci.2018.09.010
    [106] Zhu H, Zhao H, Srinil N. Experimental investigation on vortex-induced vibration and solid-structure impact of a near-bottom horizontal flexible pipeline in oblique shear flow. Journal of Fluids and Structures, 2021, 106: 103356 doi: 10.1016/j.jfluidstructs.2021.103356
    [107] Zdravkovich MM. Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. Journal of Wind Engineering and Industrial Aerodynamics, 1981, 7: 145-189 doi: 10.1016/0167-6105(81)90036-2
    [108] Zeinoddini M, Farhangmehr A, Seif MS, et al. Cross-flow vortex induced vibrations of inclined helically straked circular cylinders: An experimental study. Journal of Fluids and Structures, 2015, 59: 178-201 doi: 10.1016/j.jfluidstructs.2015.09.005
    [109] 徐万海, 栾英森, 李志彪等. 倾斜柔性抑制圆柱的涡激振动特性. 天津大学学报(自然科学与工程技术版), 2017, 50(6): 637-642 (Xu Wanhai, Luan Yingsen, Li Zhibiao, et al. Vortex-induced vibrations of an inclined flexible straked cylinder. Journal of Tianjin University (Science and Technology), 2017, 50(6): 637-642 (in Chinese)
    [110] 徐万海, 栾英森, 余杨等. 大倾角附螺旋列板倾斜圆柱涡激振动抑制分析. 工程力学, 2018, 35(1): 236-245 (Xu Wanhai, Luan Yingsen, Yu Yang, et al. Vortex-induced vibration suppression for inclined flexible straked cylinder at large inclination angle. Engineering Mechanics, 2018, 35(1): 236-245 (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0719
    [111] Xu WH, Luan YS, Han QH, et al. The effect of yaw angle on VIV suppression for an inclined flexible cylinder fitted with helical strakes. Applied Ocean Research, 2017, 67: 263-276 doi: 10.1016/j.apor.2017.07.014
    [112] Lu Y, Yu XL, Liao YY, et al. The influence of the yaw angle on the VIV fatigue damage of a yawed cylinder with or without helical strakes. Applied Ocean Research, 2020, 102: 102295 doi: 10.1016/j.apor.2020.102295
    [113] Xu WH, Luan YS, Liu LQ, et al. Influences of the helical strake cross-section shape on vortex-induced vibrations suppression for a long flexible cylinder. China Ocean Engineering, 2017, 31: 438-446 doi: 10.1007/s13344-017-0050-1
    [114] Xu WH, Qing WQ, He M, et al. Passive VIV reduction of an inclined flexible cylinder by means of helical strakes with round-section. China Ocean Engineering, 2018, 32: 413-421 doi: 10.1007/s13344-018-0043-8
    [115] Trim AD, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers. Journal of Fluids and Structures, 2005, 21: 335-361 doi: 10.1016/j.jfluidstructs.2005.07.014
    [116] Wu H, Sun DP, Lu L, et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods. Journal of Fluids and Structures, 2012, 30: 115-132 doi: 10.1016/j.jfluidstructs.2012.02.004
    [117] Zhu HJ, Yao J. Numerical evaluation of passive control of VIV by small control rods. Applied Ocean Research, 2015, 51: 93-116 doi: 10.1016/j.apor.2015.03.003
    [118] 徐万海, 杨猛, 芦燕. 控制杆对柔性圆柱涡激振动的抑制效果研究. 船舶力学, 2019, 23(2): 172-179 (Xu Wanhai, Yang Meng, Lu Yan. Investigation on the effectiveness of control rods in suppressing VIV of a flexible cylinder. Journal of Ship Mechanics, 2019, 23(2): 172-179 (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.02.006
    [119] Lu Y, Liao YY, Liu B, et al. Cross-flow vortex-induced vibration reduction of a long flexible cylinder using 3 and 4 control rods with different configurations. Applied Ocean Research, 2019, 91: 101900 doi: 10.1016/j.apor.2019.101900
    [120] Lu Y, Liao YY, Xu WH. An investigation into the fatigue damage of a long flexible cylinder with multiple control rods in crossflow. Ocean Engineering, 2020, 202: 107175 doi: 10.1016/j.oceaneng.2020.107175
    [121] Xu WH, Qin WQ, Lu Y. Application of control rods for passively suppressing cross-flow VIV of an inclined flexible cylinder. Shock and Vibration, 2018, 2018: 8365726
  • 加载中
图(14)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  197
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 录用日期:  2022-06-28
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2022-10-18

目录

    /

    返回文章
    返回