EI、Scopus 收录
中文核心期刊

强磁场影响下镓液滴撞击固壁的实验研究

EXPERIMENTAL STUDY OF GALLIUM DROPLET IMPACTING ON SOLID WALL UNDER THE STRONG MAGNETIC FIELD

  • 摘要: 在材料的电磁冶金过程及磁约束核聚变装置中, 金属液滴在磁场和壁面温度影响下的撞击过程表现出复杂的动力学特性. 本文对水平磁场作用下液态镓(Ga)液滴撞击等温和过冷壁面的铺展和回弹特性进行了实验研究. 采用高速相机拍摄液滴撞击过程中轮廓的变化, 通过图像处理获得不同磁场强度、不同撞击速度和不同底板温度下的最大铺展因子、回弹过程中的最大高度以及产生的二次液滴的半径和速度. 碰撞速度由0.45 ~ 1.8 m/s, 磁场强度从0 ~ 1.6 T, 底板温度为30 °C, −20 °C和−10 °C. 基于实验结果分析了磁场和壁面温度对液滴铺展和回弹的影响规律. 实验结果表明, 液滴撞击等温壁面和过冷壁面的最大铺展因子随We的变化均与理论预测关系式一致. 液滴撞击等温壁面的情况下, 不同的We下, 出现不同的回弹现象. 磁场抑制了平行于磁场方向的液滴铺展和回弹过程中二次液滴的产生, 而对回弹过程中的液滴在平行磁场方向上有拉伸作用. 液滴撞击过冷壁面时, 在一定的We值范围内, 同样会出现二次液滴分离现象, 此时产生的二次液滴的速度较小. 磁场的增强和We的增大都会导致液滴在高度方向的振荡减弱, 加速凝固过程.

     

    Abstract: In the electromagnetic metallurgy processing of materials and the magnetic confinement fusion device, the impact process of metal droplet under the influence of magnetic field and substrate temperature shows complex dynamic characteristics. The spread and rebound characteristics of liquid gallium droplet impacting isothermal and sub-cooled substrate under horizontal magnetic field were studied experimentally. High speed camera is used to capture the change of droplet profile during impact. The maximum spreading factor under different magnetic field strength, impact velocities and substrate temperatures, the maximum height in rebound process, the radius and velocity of secondary droplet are obtained through image processing. The impact velocity increases from 0.45 m/s to 1.8 m/s, and the magnetic field intensity increases from 0 T to 1.6 T. The substrate temperature is 30 °C, −20 °C and −10 °C. The effects of magnetic field and substrate temperature on droplet spread and rebound are analyzed. The experimental results show that the variation of the maximum spreading factor of droplet impacting on the isothermal and sub-cooled substrate is in good agreement with the theoretical prediction. Under the condition that the droplet impacts the isothermal wall, different rebound phenomena occur under different We numbers. The magnetic field inhibits the droplet spreading parallel to the magnetic field and the generation of secondary droplet, while the magnetic field has a elongation effect on the droplet spreading parallel to the magnetic field direction in the rebound process. When the droplet impacts the sub-cooled substrate, within a certain range of We number, the secondary droplet separation will also happen. At this time, the velocity of secondary droplets is smaller. The enhancement of magnetic field and the increase of We number will weaken the oscillation of the droplet in the height direction, accelerating the solidification process.

     

/

返回文章
返回