EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锆口腔种植体的动态植入过程分析与设计

王天瑜 牛一龙 周健邦 王晓飞 邵丽华 韩建民

王天瑜, 牛一龙, 周健邦, 王晓飞, 邵丽华, 韩建民. 氧化锆口腔种植体的动态植入过程分析与设计. 力学学报, 2022, 54(1): 221-232 doi: 10.6052/0459-1879-21-503
引用本文: 王天瑜, 牛一龙, 周健邦, 王晓飞, 邵丽华, 韩建民. 氧化锆口腔种植体的动态植入过程分析与设计. 力学学报, 2022, 54(1): 221-232 doi: 10.6052/0459-1879-21-503
Wang Tianyu, Niu Yilong, Zhou Jianbang, Wang Xiaofei, Shao Lihua, Han Jianmin. The analysis and design of the dynamic implantation process of zirconia dental implants. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 221-232 doi: 10.6052/0459-1879-21-503
Citation: Wang Tianyu, Niu Yilong, Zhou Jianbang, Wang Xiaofei, Shao Lihua, Han Jianmin. The analysis and design of the dynamic implantation process of zirconia dental implants. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 221-232 doi: 10.6052/0459-1879-21-503

氧化锆口腔种植体的动态植入过程分析与设计

doi: 10.6052/0459-1879-21-503
基金项目: 国家重点研发计划资助项目(2019 YFE0101100)
详细信息
    作者简介:

    邵丽华, 副教授, 主要研究方向: 微结构材料多场耦合力学. E-mail: shaolihua@buaa.edu.cn

    韩建民, 副教授, 主要研究方向: 新型口腔材料研发及评价. E-mail: hanjianmin@bjmu.edu.cn

  • 中图分类号: R783.1

THE ANALYSIS AND DESIGN OF THE DYNAMIC IMPLANTATION PROCESS OF ZIRCONIA DENTAL IMPLANTS

  • 摘要: 在牙科种植领域常使用的种植体材料多为纯钛或钛合金, 然而钛金属种植体存在美学缺陷及潜在的致敏可能等问题. 氧化锆陶瓷由于其高强度、美观性与生物相容性被认为是钛金属种植体的理想替代品, 但目前国内对于氧化锆种植体的研究仍处于起步阶段. 本文通过对氧化锆种植体及骨组织进行有限元建模, 并对种植体的动态植入过程进行仿真, 分析了骨组织内部的应力-应变状况. 结果发现, 随着植入深度的增加, 种植体与骨组织的接触面积增大, 松质骨内应力增加. 考虑到骨组织的具体结构, 将松质骨内的最大应力-应变作为分析的主要对象, 结合损伤分析, 对种植体模型进行了优化. 此外, 还设计了3种具有自攻刃设计的种植体模型, 分别进行应力应变分析后确定了最优设计. 之后建立了具有自攻刃设计的种植体模型, 并模拟了临床的3种植入方案: 螺纹成形、螺纹切割、螺纹成形与切割进行分析, 通过分析得到螺纹成形与切割种植方案更为安全的结论. 本文结果可以指导氧化锆种植体的结构设计以及植入时的条件设定等, 为我国自主研发的氧化锆种植体进行了理论指导, 为其早日进行临床应用指明了方向.

     

  • 图  1  (a)密质骨与(b)松质骨有限元建模

    Figure  1.  Finite element modeling of (a) the compact bone and (b) cancellous bone

    图  2  (a) S3骨组织装配图与(b) S1, S2骨组织装配图 (单位: mm)

    Figure  2.  Schematic plot of (a) model S3 and (b) that of S1 and S2 (unit: mm)

    图  3  局部螺纹示意图

    Figure  3.  Schematic diagram of partial thread

    图  4  种植体模型

    Figure  4.  Implant model

    图  5  有限元仿真示意图

    Figure  5.  Schematic diagram of finite element simulation

    图  6  松质骨与密质骨的应力测量方向设定

    Figure  6.  Setting of the stress measurement direction of cancellous bone and compact bone

    图  7  松质骨内应力-dw图线

    Figure  7.  Cancellous bone internal stress- dw graph

    图  8  含有自攻刃设计的种植体

    Figure  8.  Implant with self-tapping blade design

    图  9  自攻刃设计种植体剖面图

    Figure  9.  Profile of self-tapping blade design implant

    图  10  松质骨内最大应力随深度变化图线

    Figure  10.  The maximum stress in cancellous bone versus depth

    图  11  松质骨内最大应变随深度变化图线

    Figure  11.  The maximum strain in cancellous bone versus depth

    表  1  骨组织模型的力学性能参数

    Table  1.   Mechanical parameters of the bone tissue model

    Parameter nameCancellous boneCortical boneSource
    elastic Young’s modulus/GPa 0.7 9 Ref. [26]
    poisson’s ratio 0.35 0.3
    density/(107 kg·mm−3) 5.3 18
    Plastic yield stress/MPa 35 180
    plastic strain 0.135 0.015
    contact friction coefficient 0.61 0.61 Ref. [27]
    下载: 导出CSV

    表  2  种植体模型的力学性能参数

    Table  2.   Mechanical parameters of the implant model

    Parameter name Source
    elastic Young’s modulus/GPa 210
    poisson’s ratio 0.1
    density/(107 kg·mm−3) 62.7
    plastic yield stress/MPa 648
    plastic strain 0.008 Ref. [34]
    contact friction coefficient (with cancellous bone) 0.53 Ref. [26]
    下载: 导出CSV

    表  3  松质骨内最大应力与最大应变

    Table  3.   Maximum stress and maximum strain in cancellous bone

    Time/sDepth/mmMax. stress/MPaMax. strain/10−6
    2 0.78 0.26 256
    4 1.56 1.14 489
    6 2.34 1.42 624
    8 3.12 1.68 695
    10 3.90 1.92 925
    12 4.68 2.24 1254
    14 5.46 2.36 1365
    16 6.24 2.46 1462
    18 7.02 2.35 1324
    20 7.80 2.47 1436
    22 8.58 2.52 1478
    24 9.36 2.48 1454
    26 10.14 2.62 1523
    28 10.92 2.57 1495
    30 11.60 2.84 1582
    下载: 导出CSV

    表  4  按应变水平考虑骨组织状态[34-35]

    Table  4.   Consider the state of bone tissue according to the strain level[34-35]

    Strain level Evaluation Bone state
    below 1000μ too small bone atrophy
    between 1000-1500μ adapted bone homoeostasis is maintained
    between 1500-3000μ physiological overload bone modeling takes place
    over 3000μ pathological overload bone damage and absorption
    over 25000μ limit catastrophic fracture
    下载: 导出CSV

    表  5  3种自攻刃设计种植体种植过程中松质骨内最大应力与最大应变

    Table  5.   The maximum stress and maximum strain in the cancellous bone during implantation of three self-tapping blade designs

    Time/s Depth/mm Self-tapping blade design A Self-tapping blade design B Self-tapping blade design C
    Max. stress/MPa Max.
    strain/10−6
    Max. stress/MPa Max.
    strain/10−6
    Max. stress/MPa Max.
    strain/10−6
    2 0.78 0.56 412 0.32 356 0.61 472
    4 1.56 1.35 576 1.08 468 1.42 685
    6 2.34 1.57 721 1.31 598 1.87 1062
    8 3.12 1.54 695 1.42 665 1.92 1154
    10 3.90 1.72 896 1.69 884 2.02 1225
    12 4.68 2.08 1247 1.82 1145 2.18 1309
    14 5.46 2.15 1305 1.97 1201 2.32 1321
    16 6.24 2.26 1347 1.99 1215 2.37 1341
    18 7.02 2.25 1365 2.15 1308 2.39 1354
    20 7.80 2.33 1382 2.21 1345 2.44 1398
    22 8.58 2.34 1396 2.28 1384 2.48 1414
    24 9.36 2.28 1382 2.24 1365 2.52 1442
    26 10.14 2.35 1405 2.35 1405 2.58 1481
    28 10.92 2.47 1432 2.46 1454 2.61 1497
    30 11.60 2.52 1475 2.49 1462 2.64 1515
    下载: 导出CSV

    表  6  3种过程下松质骨内最大应力应变水平汇总

    Table  6.   Summary of the maximum stress and strain levels in the cancellous bone under the three processes

    Depth/mmS1S2S3
    Max. stress/MPaMax.
    strain/10−6
    Max. stress/MPaMax.
    strain/10−6
    Max. stress/MPaMax.
    strain/10−6
    0.78 0.08 106 0.58 427 0.32 356
    1.56 0.25 284 1.42 654 1.08 468
    2.34 0.56 421 2.24 1372 1.31 598
    3.12 0.62 451 2.84 1602 1.42 665
    3.90 0.75 467 3.56 2242 1.69 884
    4.68 0.89 486 3.94 2452 1.82 1145
    5.46 0.94 499 4.05 2597 1.97 1201
    6.24 0.96 524 4.24 2689 1.99 1215
    7.02 1.04 541 4.56 2752 2.15 1308
    7.80 1.09 545 4.89 2872 2.21 1345
    8.58 1.15 582 4.90 2897 2.28 1384
    9.36 1.31 604 5.15 3089 2.24 1365
    10.14 1.36 654 5.36 3211 2.35 1405
    10.92 1.45 675 5.28 3122 2.46 1454
    11.60 1.32 605 5.42 3214 2.49 1462
    下载: 导出CSV
  • [1] 李洋阳, 马汝逸. 氧化锆种植体表面改性研究及进展. 医药论坛杂志, 2020, 41(11): 173-177 (Li Yangyang, Ma Ruyi. Research and development of surface modification of the zirconia implant. Journal of Medical Forum, 2020, 41(11): 173-177 (in Chinese)
    [2] 马晴, 施丽燕, 黄思雪等. 氧化锆陶瓷在牙体修复领域的研究现状及展望. 中国组织工程研究, 2021, 25(22): 3597-3602 (Ma Qing, Shi Liyan, Huang Sixue, et al. Research Status and Prospect of Zirconia Ceramics in Dental Prosthesis. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3597-3602 (in Chinese)
    [3] 林耿冰, 郭楠, 许昕. 氧化锆全瓷固定桥对后牙种植修复患者并发症及种植体存留率的影响. 临床和实验医学杂志, 2016, 15(19): 1936-1939 (Lin Gengbing, Guo Nan, Xu Xin. The effect of zirconia all ceramic fixed bridge in dental implant on its complications and survival rate. Journal of Clinical and Experimental Medicine, 2016, 15(19): 1936-1939 (in Chinese)
    [4] Li H, Shi M, Liu X, et al. Uncertainty optimization of dental implant based on finite element method, global sensitivity analysis and support vector regression. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233(2): 232-243
    [5] Bahadirli G, Yilmaz S, Jones T, et al. Influences of implant and framework materials on stress distribution: A three-dimensional finite element analysis study. International Journal of Oral and Maxillofacial Implants, 2018, 33(5): e117-e126
    [6] Sahin S. Static and dynamic stress analysis of standard- and narrow-diameter implants: A 3D finite element analysis. International Journal of Oral and Maxillofacial Implants, 2020, 35(4): e58-e68 doi: 10.11607/jomi.8037
    [7] Calandriello R, Tomatis M. Immediate occlusal loading of single lower molars using Brånemark system wide platform Ti unite implants: A 5-year follow-up report of a prospective clinical multicenter study. Clinical Implant Dentistry and Related Research, 2011, 13(4): 311-318 doi: 10.1111/j.1708-8208.2009.00214.x
    [8] Lambert F, Weber H, Susarla S, et al. Descriptive analysis of implant and prosthodontic survival rates with fifixed implant supported rehabilitations in the edentulous maxilla. Journal of Periodontology, 2009, 80(8): 1220-1230 doi: 10.1902/jop.2009.090109
    [9] Elsyad M, Elgamal M, Mohammed A, et al. Patient satisfaction and oral health-related quality of life (OHRQoL) of conventional denture, fixed prosthesis and milled bar overdenture for all-on-4 implant rehabilitation: A crossover study. Clinical Oral Implants Research, 2019, 30(11): 1107-1117 doi: 10.1111/clr.13524
    [10] Durkan R, Oyar P, Deste G. Maxillary and mandibular all-on-four implant designs: A review. Nigerian Journal of Clinical Practice, 2019, 22(8): 1033-1040
    [11] Lima L, Freitas N, Novais V, et al. Impact of implant number on mandibular implant-supported profile prostheses: A systematic review. International Journal of Oral and Maxillofacial Implants, 2018, 33(4): 795-807 doi: 10.11607/jomi.6243
    [12] Luna G, Lemos C, Santiago J, et al. Optimal number of implants for complete-arch implant-supported prostheses with a follow up of at least 5 years: A systematic review and meta-analysis. Journal of Prosthetic Dentistry, 2019, 121(5): 766-774 doi: 10.1016/j.prosdent.2018.06.001
    [13] Niedermaier R, Stelzle F, Riemann M, et al. Implant-supported immediately loaded fixed full-arch dentures: evaluation of implant survival rates in a case cohort of up to 7 years. Clinical Implant Dentistry and Related Research, 2017, 19(1): 4-19 doi: 10.1111/cid.12421
    [14] Soto D, Zaragozi R, Penarrocha M, et al. The all-on-four treatment concept: Systematic review. Journal of Clinical and Experimental Dentistry, 2017, 9(3): e474-e488
    [15] Balkaya M. Investigation of influence of different implant size and placement on stress distribution with 3-dimensional finite element analysis. Implant Dentistry, 2014, 23(6): 716-722
    [16] Ogawa T, Dhaliwal S, Naert I, et al. Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses. Journal of Oral Rehabilitation, 2010, 37(7): 525-531 doi: 10.1111/j.1365-2842.2010.02076.x
    [17] Wolff J. The Law of the Transformation of the Bones. Berlin: Hirschwald, 1892
    [18] Guan H, Rudi C, Johnson W, et al. Dynamic modelling and simulation of dental implant insertion process—A finite element study. Finite Elements in Analysis & Design, 2011, 47(8): 886-897
    [19] Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontol, 2000, 47(2008): 51-66
    [20] 周宏, 李俊峰, 王天舒. 用于ALE有限元模拟的网格更新方法. 力学学报, 2008, 2(2): 267-272 (Zhou Hong, Li Junfeng, Wang Tianshu. Mesh update algorithm in ale finite method within free surface flow. Chinese Journal of Theoretical and Applied Mechanics, 2008, 2(2): 267-272 (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.02.016
    [21] 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018, 50(2): 395-404 (He Tao. A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary lagrangian-eulerian finite element formulation. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 395-404 (in Chinese)
    [22] Van Staden R, Guan H, Johnson N, et al. Step-wise analysis of dental implant insertion process using fifinite element technique, Clinical Oral Implants Research, 2008, 19 (3): 303-313
    [23] ABAQUS, /http://www.simulia.comS, accessed 5 February, 2007
    [24] 李昊, 张西正. 骨组织疲劳损伤的生物力学研究概述. 医用生物力学, 2016, 31(6): 556-561 (Li Hao, Zhang Xizheng. Review of biomechanical researches on fatigue damage in bone. Journal of Medical Biomechanics, 2016, 31(6): 556-561 (in Chinese)
    [25] 于露, 李昊, 高丽兰等. 骨组织的多层次生物力学特性及本构关系. 医用生物力学, 2019, 34(4): 434-439 (Yu Lu, Li Hao, Gao Lilan, et al. Hierarchical biomechanical properties and constitutive relationships of bone tissues. Journal of Medical Biomechanics, 2019, 34(4): 434-439 (in Chinese)
    [26] Burstein A, Reilly D, Martens M. Aging of bone tissue: Mechanical properties. The Journal of Bone and Joint Surgery, 1976, 58(1): 82-86 doi: 10.2106/00004623-197658010-00015
    [27] Choubey A, Basu B, Balasubramaniam R. Tribological behaviour of Ti-based alloys in simulated body flfluid solution at fretting contacts. Mater. Sci. Eng., 2004, 379: 234-239 doi: 10.1016/j.msea.2004.02.027
    [28] Elias C, Rocha F, Nascimento A, et al, Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16: 169-180
    [29] Gao H, Li X, Wang C, et al. Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular large defect: A simulated study. Materials Science and Engineering C, 2019, 104: 109934 doi: 10.1016/j.msec.2019.109934
    [30] Ayali A, Altagar M, Ozan O, et al. Biomechanical comparison of the all-on-4, M-4, and V-4 techniques in an atrophic maxilla: A 3D finite element analysis. Computers in Biology and Medicine, 2020, 123: 103880 doi: 10.1016/j.compbiomed.2020.103880
    [31] Liu T, Mu Z, Yu T, et al. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: A three-dimensional finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22(6): 585-594 doi: 10.1080/10255842.2019.1572120
    [32] Drago C. Ratios of cantilever lengths and anterior-posterior spreads of definitive hybrid full-arch, screw-retained prostheses: results of a clinical study. Journal of Prosthodontics: Official Journal of the American College of Prosthodontists, 2018, 27(5): 402-408 doi: 10.1111/jopr.12519
    [33] 陈国清, 朱晓丽, 王康等. 氧化锆陶瓷超塑性变形行为及机理. 现代技术陶瓷, 2017, 38(6): 433-439 (Chen Guoqing, Zhu Xiaoli, Wang Kang, et al. Superplastic behavior and deformation mechanism of zirconia ceramics. Advanced Ceramics, 2017, 38(6): 433-439 (in Chinese)
    [34] Rieger R, Mayberry M, Brose M. Finite element analysis of six endosseous implants. The Journal of prosthetic dentistry, 1990, 63(6): 671-676 doi: 10.1016/0022-3913(90)90325-7
    [35] Mahony A, Bowles Q, Woolsey G, et al. Stress distribution in the single-unit osseointegrated dental implant: fifinite element analyses of axial and off-axial loading. Implant Dentistry, 2000, 9(3): 207-218 doi: 10.1097/00008505-200009030-00006
    [36] 张潇潇, 姒蜜思, 赖红昌. 上颌窦内提升术用于严重骨萎缩患者种植修复3年疗效观察. 中国口腔颌面外科杂志, 2014, 12(3): 257-260 (Zhang Xiaoxiao, Si Misi, Lai Hongchang. Osteotome sinus floor elevation without grafting on severely resorbed maxillary crest: A 3-year prospective study. China Journal of Oral and Maxillofacial Surgery, 2014, 12(3): 257-260 (in Chinese)
    [37] 徐俊华, Jiang J, 沈晨露等. 个性化氧化锆基台对种植体周围软硬组织影响的前瞻性临床研究. 中华口腔医学杂志, 2020, 55(11): 885-890 (Xu Junhua, Jiang Jonathan, Shen Chenlu. Effect of customized zirconia abutment on peri-implant tissue: A one-year prospective study. Chinese Journal of Stomatology, 2020, 55(11): 885-890 (in Chinese) doi: 10.3760/cma.j.cn112144-20200623-00364
    [38] 吴也可, 郜然然, 左渝陵等. 影响微种植体正畸治疗成功率的因素. 中国组织工程研究, 2020, 24(4): 538-543 (Wu Yeke, Gao Ranran, Zuo Yuling, et al. Factors affecting the clinical success rate of miniscrew implants for orthodontic treatment. Chinese Journal of Tissue Engineering Research, 2020, 24(4): 538-543 (in Chinese)
    [39] 龚铭, 孙晓琳, 杜留熠等. 自攻型种植体在即刻种植中的生物学性能研究. 口腔医学, 2021, 41(8): 678-684 (Gong Ming, Sun Xiaolin, Du Liuyi, et al. Study on the biological performance of self-tapping dental implants in immediate implantation. Stomatology, 2021, 41(8): 678-684 (in Chinese)
    [40] Wu S, Lee C, Fu P, et al. The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants. Medical Engineering and Physics, 2012, 34(7): 797-805 doi: 10.1016/j.medengphy.2011.09.021
    [41] Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: A human cadaver study. Clinical Implant Dentistry and Related Research, 2000, 2(2): 85-92 doi: 10.1111/j.1708-8208.2000.tb00110.x
    [42] Rho J, Ashman R, Turner C. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. Journal of Biomechanics, 1993, 26(2): 111-119 doi: 10.1016/0021-9290(93)90042-D
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  41
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-02
  • 录用日期:  2021-12-05
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-01-18

目录

    /

    返回文章
    返回