EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb3Sn高场复合超导体临界性能力学变形效应的多尺度模拟

杨绪佳 何宇新 张鑫 杨小敏 王涛 乔力

杨绪佳, 何宇新, 张鑫, 杨小敏, 王涛, 乔力. Nb3Sn高场复合超导体临界性能力学变形效应的多尺度模拟. 力学学报, 2022, 54(3): 719-731 doi: 10.6052/0459-1879-21-491
引用本文: 杨绪佳, 何宇新, 张鑫, 杨小敏, 王涛, 乔力. Nb3Sn高场复合超导体临界性能力学变形效应的多尺度模拟. 力学学报, 2022, 54(3): 719-731 doi: 10.6052/0459-1879-21-491
Yang Xujia, He Yuxin, Zhang Xin, Yang Xiaomin, Wang Tao, Qiao Li. Multiscale simulation of mechanical deformation effects on critical properties of Nb3Sn high field composite superconductors. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 719-731 doi: 10.6052/0459-1879-21-491
Citation: Yang Xujia, He Yuxin, Zhang Xin, Yang Xiaomin, Wang Tao, Qiao Li. Multiscale simulation of mechanical deformation effects on critical properties of Nb3Sn high field composite superconductors. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 719-731 doi: 10.6052/0459-1879-21-491

Nb3Sn高场复合超导体临界性能力学变形效应的多尺度模拟

doi: 10.6052/0459-1879-21-491
基金项目: 国家自然科学基金资助项目(11772212)
详细信息
    作者简介:

    乔力, 教授, 主要研究方向: 电磁固体力学. E-mail: qiaoli@tyut.edu.cn

  • 中图分类号: TB331

MULTISCALE SIMULATION OF MECHANICAL DEFORMATION EFFECTS ON CRITICAL PROPERTIES OF Nb3Sn HIGH FIELD COMPOSITE SUPERCONDUCTORS

  • 摘要: A15型Nb3Sn超导体是制造高场( > 10 T)超导磁体线圈的主要材料, 被广泛应用于磁约束可控核聚变、高能物理等强磁场超导磁体装备制造领域. 力学变形诱导的Nb3Sn超导临界性能退化给高场超导磁体装备的电磁性能指标和安全稳定运行造成了极其不利的影响. 鉴于Nb3Sn超导体具有复杂的多尺度结构特征, 不同尺度下变形与超导电性能耦合行为是相互关联的, 本文建立了考虑微/细/宏观关联的非线性力电磁耦合本构模型, 提出了从原子尺度A15晶体结构到超导体微结构到宏观非均质Nb3Sn复合超导体的多尺度模拟模型. 基于多晶体有限元方法, 对静水压加载条件下Nb3Sn多晶体超导临界温度衰退和单轴拉压加载条件下Nb3Sn复合多晶体临界性能衰退行为进行了模拟预测, 预测结果与实验观测结果定性吻合. 该模型揭示了Nb3Sn复合超导体变形-超导电性能多尺度耦合机理, 实现对高场超导体力、电、磁、热耦合行为的预测, 有助于提高对A15型金属间化合物高场超导复合材料力、电、磁、热多尺度耦合行为的认识和描述能力, 为强磁场超导磁体的设计与制造提供有力的理论支撑.

     

  • 图  1  Nb3Sn多尺度结构

    Figure  1.  Multiscale structures in Nb3Sn superconducting composite

    图  2  多尺度分析示意简图

    Figure  2.  Multiscale analysis of the electromechanical coupling effects in Nb3Sn superconducting composite

    图  3  Nb3Sn多晶体临界温度在静水压强下的变化

    Figure  3.  The pressure-induced critical temperature variations of polycrystal Nb3Sn

    图  4  轴向变形作用下Nb3Sn临界性能变化

    Figure  4.  Axial-strain induced critical properties variations of Nb3Sn composite

    图  5  单轴拉压下Nb3Sn临界参数变化

    Figure  5.  The uniaxial strain-induced degradations of the critical temperature and the upper critical field

    6  随机选取的相邻晶粒云图

    6.  The electromechanical coupling responses in adjacent Nb3Sn grains

    图  6  随机选取的相邻晶粒云图(续)

    Figure  6.  The electromechanical coupling responses in adjacent Nb3Sn grains (continued)

    表  1  模型中的参数值[38]

    Table  1.   The parameters in the density of states model[38]

    χ1χ2χ3κ1κ2κ3
    0.97512.57−9.225−35.5−7.49−5.65
    111221223132
    0.004 750.0020.015 280.0020.012 80.001
    下载: 导出CSV

    表  2  载荷条件

    Table  2.   Load condition

    Strain/%$ {\sigma }_{zz} $/GPa$ {\sigma }_{rr} $/GPa
    −1.1−0.715−0.098
    −0.7−0.455−0.062
    −0.3−0.195−0.027
    0.10.0650.009
    0.50.3250.044
    0.90.5850.080
    1.10.7150.098
    下载: 导出CSV
  • [1] 周又和, 王省哲. ITER超导磁体设计与制备中的若干关键力学问题. 中国科学:物理学力学天文学, 2013, 43(12): 1558-1569 (Zhou Youhe, Wang Xingzhe. Review on some key issues related to design and fabrication of superconducting magnets in ITER. Scientia Sinica Physica,Mechanica&Astronomica, 2013, 43(12): 1558-1569 (in Chinese)
    [2] 郑晓静. 关于极端力学. 力学学报, 2019, 51(4): 1266-1272 (Zhen Xiaojing. About extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272 (in Chinese) doi: 10.6052/0459-1879-19-189
    [3] Müller CB, Saur EJ. Influence of mechanical constraints on the superconducting transition of Nb3Sn-coated niobium wires and ribbons. Advances in Cryogenic Engineering, 1963, 8: 574-578
    [4] Ekin JW. Strain scaling law for flux pinning in practical superconductors. Part 1: Basic relationship and application to Nb3Sn conductors. Cryogenics, 1980, 20(11): 611-624
    [5] Ekin JW. Effect of transverse compressive stress on the critical current and upper critical field of Nb3Sn. Journal of Applied Physics, 1987, 62(12): 4829-4834 doi: 10.1063/1.338986
    [6] Nijhuis A, Ilyin Y, Abbas W. Axial and transverse stress-strain characterization of the EU dipole high current density Nb3Sn strand. Superconductor Science and Technology, 2008, 21(6): 065001 doi: 10.1088/0953-2048/21/6/065001
    [7] Seeber B, Ferreira A, Abacherli V, et al. Critical current of a Nb3Sn bronze route conductor under uniaxial tensile and transverse compressive stress. Superconductor Science and Technology, 2007, 20(9): S184-S188 doi: 10.1088/0953-2048/20/9/S11
    [8] Nijhuis A, van Meerdervoort RP, Krooshoop HJG, et al. The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands. Superconductor Science and Technology, 2013, 26(8): 084004 doi: 10.1088/0953-2048/26/8/084004
    [9] 刘方, 翁佩德, 武玉等. 超导股线Nb3Sn的性能测试研究, 低温物理学报, 2007, 29(1): 68-72

    Liu Fang, Wen Peide, Wu Yu, et al. Study on performance test of superconducting strand Nb3Sn. Low Temperature Physical Letters, 2007, 29(1): 68-72 (in Chinese))
    [10] Zhang PX, Liang M, Tang XD, et al. Strain influence on Jc behavior of Nb3Sn multifilamentary strands fabricated by internal tin process for ITER. Physica C, 2008, 468(15): 1843-1846
    [11] 武玉, 韩奇阳, 凌峰等. ITER TF导体制造研究. 低温与超导, 2009, 37(11): 33-37 (Wu Yu, Han Qiyang, Ling Feng, et al. Research on ITER TF conductor manufacturing. Cryogenics & Superconductivity, 2009, 37(11): 33-37 (in Chinese) doi: 10.3969/j.issn.1001-7100.2009.11.008
    [12] Jiang HW, Song TW. Coupling loss time constant calculation of cable-in-conduit conductor considering electromagnetic load cycle. IEEE Transactions on Applied Superconductivity, 2016, 26(2): 1-5
    [13] Ten Haken B, Godeke A, Ten Kate HH. The influence of compressive and tensile axial strain on the critical properties of Nb3Sn conductors. IEEE Transactions on Applied Superconductivity, 1995, 5(2): 1909-1912 doi: 10.1109/77.402955
    [14] Markiewicz WD. Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence. Cryogenics, 2004, 44(11): 767-782 doi: 10.1016/j.cryogenics.2004.03.019
    [15] Markiewicz WD. Comparison of strain scaling functions for the strain dependence of composite Nb3Sn superconductors. Superconductor Science Technology, 2008, 21(5): 48-48
    [16] Oh S, Kim K. A scaling law for the critical current of Nb3Sn stands based on strong-coupling theory of superconductivity. Journal of Applied Physics, 2006, 99(3): 033909 doi: 10.1063/1.2170415
    [17] Qiao L, Zheng XJ. A three-dimensional strain model for the superconducting properties of strained international thermonuclear experimental reactor Nb3Sn strands. Journal of Applied Physics, 2012, 112(11): 113909 doi: 10.1063/1.4766909
    [18] Ren Z, Gamperle L, Fete A, et al. Evolution of T2 resistivity and Superconductivity in Nb3Sn under pressure. Physical Review B, 2017, 95(18): 184503 doi: 10.1103/PhysRevB.95.184503
    [19] 何宇新, 乔力, 石震天等. 静水压作用下Nb3Sn多晶体超导临界温度退化的耦合模型. 固体力学学报, 2020, 41(4): 334-342 (He Yuxin, Qiao Li, Shi Zhentian, et al. A coupled model for critical temperature degradation of Nb3Sn polycrystalline superconductivity under hydrostatic pressure. Chinese Journal of Solid Mechanics, 2020, 41(4): 334-342 (in Chinese)
    [20] Yong HD, Xue F, Zhou YH. Effect of strain on depairing current density in deformable superconducting thin films. Journal of Applied Physics, 2011, 110: 033905-4 doi: 10.1063/1.3610508
    [21] Yong HD, Zhou YH. Depairing current density in superconducting film with shear deformation. Journal of Applied Physics, 2012, 111: 053929-5 doi: 10.1063/1.3693576
    [22] 梁明, 张平祥, 卢亚锋等. 磁体用Nb3Sn超导体研究进展. 材料导报, 2006(12): 1-4 (Liang Ming, Zhang Pingxiang, Lu Yafeng, et al. Advances in Nb3Sn superconductor for magnet application. Materials Reports, 2006(12): 1-4 (in Chinese)
    [23] Boso DP, Lefik M, Schrefler BA. Multiscale analysis of the influence of the triplet helicoidal geometry on the strain state of a Nb3Sn based strand for ITER coils. Cryogenics, 2005, 45(9): 589-605
    [24] Sandim MJR, Tytko D, Kostka A, et al. Grain boundary segregation in a bronze-route Nb3Sn superconducting wire studied by atom probe tomography. Superconductor Science and Technology, 2013, 26(5): 055008 doi: 10.1088/0953-2048/26/5/055008
    [25] Wu IW, Dietderich DR, Holthuis JT, et al. The microstructure and critical current characteristic of a bronze-processed multifilamentary Nb3Sn superconducting wire. Journal of Applied Physics, 1983, 54(12): 7139-7151
    [26] Materials Project. https://www.materialsproject.org/
    [27] Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17-20): 1729-1745 doi: 10.1016/j.cma.2011.01.002
    [28] Flükiger R, Uglietti D, Senatore C, et al. Microstructure, composition and critical current density of superconducting Nb3Sn wires. Cryogenics, 2008, 48(7): 293-307
    [29] Sandim MJR, Sandim HRZ, Zaefferer S. Electron backscatter diffraction study of Nb3Sn superconducting multifilamentary wire. Scripta Materialia, 2009, 62(2): 59-62
    [30] 毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术. 北京: 冶金工业出版社, 2008

    Mao Weiping, Yang Ping, Chen Len. Material Texture Analysis Principle and Detection Technology. Beijing: Metallurgical Industry Press, 2008 (in Chinese)
    [31] Python. https://www.python.org/
    [32] 乔力, 杨嘉超, 石震天等. Nb3Sn复合超导体中复杂形貌晶粒及晶界的力学变形分析. 应用力学学报, 2021, 38(3): 1062-1070 (Qiao Li, Yang Jiachao, Shi Zhentian, et al. Mechanical deformation analysis of complex morphology grains and grain boundaries in Nb3Sn composite superconductor. Chinese Journal of Applied Mechanics, 2021, 38(3): 1062-1070 (in Chinese)
    [33] Bottura L, Bordini B. Jc(B, T, ε) parameterization for the ITER Nb3Sn production. IEEE Trans. Appl. Supercond., 2009, 19(3): 1521-1524 doi: 10.1109/TASC.2009.2018278
    [34] Parks RD. Superconductivity. New York: Dekker, 1969
    [35] Maki K. The magnetic properties of superconducting alloys II. Physics, 1964, 1(2): 127-143
    [36] de Gennes PG. Superconductivity of Metals and Alloys. New York: Benjamin, 1966
    [37] de Gennes PG. Behavior of dirty superconductors in high magnetic fields. Physik der Kondensierten Materie, 1964, 3(2): 79-90
    [38] Qiao L, Zhang X, Ding H, et al. An intrinsic model for strain tensor effects on the density of states in A15Nb3Sn. Cryogenics, 2019, 97: 50-54 doi: 10.1016/j.cryogenics.2018.11.002
    [39] Orlando TP, McNiff EJ, Foner S, et al. Critical fields, pauli paramagnetic limiting, and material parameters of Nb3Sn and V3Si. Physical Review B, 1979, 19(9): 4545-4561 doi: 10.1103/PhysRevB.19.4545
    [40] Godeke A. A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state. Superconductor Science and Technology, 2006, 19: 68-80 doi: 10.1088/0953-2048/19/1/012
    [41] Mondonico G, Seeber B, Senatore C, et al. Improvement of electromechanical properties of an ITER internal tin Nb3Sn wire. Journal of Applied Physics, 2010, 108(9): 093906 doi: 10.1063/1.3499649
    [42] Taylor D, Hampshire DP. The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires. Superconductor Science and Technology, 2005, 18(12): S241-S252 doi: 10.1088/0953-2048/18/12/005
    [43] Liu Y, Xue F, Gou XF. The influence of dispersedly distributed cracks on critical current of the Nb3Sn strand. Journal of Superconductivity & Novel Magnetism, 2018, 31(5): 1323-1328
    [44] Senatore C, Abacherli V, Cantoni M, et al. Distribution of T-c from calorimetry and the determination of Sn gradients in bronze route Nb3Sn wires with an internal and external Ti source. Superconductor Science and Technology, 2007, 20: S217-S222
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  106
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回