EI、Scopus 收录
中文核心期刊

一种压电驱动的三足爬行机器人

A PIEZOELECTRIC-DRIVEN THREE-LEGGED CRAWLING ROBOT

  • 摘要: 机器人领域涉及到力学、机械、材料、控制、电子和计算机等多个学科. 其中, 爬行机器人可在极端环境下工作, 进而可有效降低人工作业的危险性并提高工作效率. 因此, 爬行机器人一直是机器人领域的重点研究对象. 压电陶瓷是一种能够将机械能和电能互相转换的新型功能陶瓷材料. 逆压电效应是指当在电介质的极化方向施加电场, 这些电介质就在一定方向上产生机械变形或机械压力, 当外加电场撤去时, 这些变形或应力也随之消失. 本文基于压电陶瓷的逆压电效应设计了一种由3条弯曲变截面梁支撑的一体化三足爬行机器人. 利用理论力学方法对该三足爬行机器人建立整体受力分析方程, 再用哈密顿原理对变截面、变角度梁建立动力学方程, 最终得到了可求解该三足爬行机器人的压电驱动腿固有频率的方程. 设计并制作了三足爬行机器人实物, 通过实验测试了不同弯折角度、不同驱动频率、不同负载、不同电压波形对运动方向及运动速度的影响. 最后利用不对称的驱动电压使三足爬行机器人实现了左转、右转以及不加导轨的近似直线运动, 实现了设计的3个方向的运动, 最后分析了该机器人的能耗问题. 该研究可为微型爬行机器人设计和实验提供参考依据.

     

    Abstract: The field of robotics involves many disciplines such as mechanics, mechanics, materials, control, electronics and computers. Among them, creeping robots can work in extreme environments, which in turn can effectively reduce the risk of manual work and improve work efficiency. Therefore, creeping robots have always been the focus of research in the field of robots. Piezoelectric ceramic is a new functional ceramic material that can convert mechanical and electrical energy into each other. The inverse piezoelectric effect refers to when an electric field is applied in the polarized direction of the dielectric, these dielectrics produce mechanical deformation or mechanical pressure in a certain direction, and when the applied electric field is removed, these deformations or stresses disappear. Based on the reverse piezoelectric effect of piezoelectric ceramics, an integrated three-legged crawling robot supported by three bending cross-sectional beams is designed. We use method of theoretical mechanics to establish the overall force analysis equation for the three-legged crawling robot. Then, we use Hamilton’s principle to establish the dynamic equation of the beams (with variable cross-sections and variable angles) of the piezoelectric-driven leg, and finally obtain the complete equations which can be used to calculate resonant frequencies of the piezoelectric-driven leg of the three-legged crawling robot. More importantly, the three-legged crawling robot is designed and produced, and the influence of the different bending angle, the different driving frequency, the different load and the different driving voltage waveform on the direction and speed of motion is explored in experiments. Finally, the asymmetric driving voltage is used to make the three-legged crawling robot realize the approximate straight motion without rail and movement of left turn and right turn, realize the designed movement in three directions, and finally analyze the energy consumption of the robot. This study can provide reference for the design and test of micro-crawling robots.

     

/

返回文章
返回