EI、Scopus 收录
中文核心期刊

利用摩擦纳米发电机的流体能量俘获研究新进展

李申芳, 王军雷, 王中林

李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927. DOI: 10.6052/0459-1879-21-411
引用本文: 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927. DOI: 10.6052/0459-1879-21-411
Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927. DOI: 10.6052/0459-1879-21-411
Citation: Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927. DOI: 10.6052/0459-1879-21-411
李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927. CSTR: 32045.14.0459-1879-21-411
引用本文: 李申芳, 王军雷, 王中林. 利用摩擦纳米发电机的流体能量俘获研究新进展. 力学学报, 2021, 53(11): 2910-2927. CSTR: 32045.14.0459-1879-21-411
Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927. CSTR: 32045.14.0459-1879-21-411
Citation: Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927. CSTR: 32045.14.0459-1879-21-411

利用摩擦纳米发电机的流体能量俘获研究新进展

基金项目: 国家自然科学基金资助项目(51977196)
详细信息
    作者简介:

    王军雷, 教授, 主要研究方向: 环境能量俘获, 流致振动抑制及利用. E-mail: jlwang@zzu.edu.cn

  • 中图分类号: TK79,TK89

PROGRESSION ON FLUID ENERGY HARVESTING BASED ON TRIBOELECTRIC NANOGENERATORS

  • 摘要: 环境中的流体 (包括气体和液体) 动能是十分丰富且重要的清洁能源之一, 流体能量可通过不同的能量俘获技术 (电磁发电技术、压电能量俘获技术) 被转化为电能并供人们使用. 自2012年王中林研究团队发明摩擦纳米发电机 (triboelectric nanogenerator, TENG) 以来, TENG已成为了最重要的能量, 俘获技术之一, 并应用于流体能量俘获研究中. 论文综述了当前用于流体能量俘获的摩擦纳米发电机 (fluidic energy harvesting TENG, FEH-TENG) 的研究现状. 介绍了 FEH-TENG 中摩擦电材料之间的电荷转移原理以及基本的工作模式. 在气流动能俘获方面, 流致振动 (如涡激振动、驰振、颤振和尾流驰振等)是一种有效的将流体动力转化为机械能的物理机制, 基于该机制, 总结了FEH-TENG在风能和流致振动能量俘获中的研究进展以及各类能量俘获结构. 液体动能俘获方面总结了 FEH-TENG 在波浪和雨滴能量俘获中的研究进展. 介绍了基于 FEH-TENG的混合能量俘获系统和摩擦电材料优化在提升FEH-TENG流体能量俘获效率方面的研究. 接着介绍了FEH-TENG在不同领域中的应用. 最后讨论了目前 FEH-TENG 在流体能量俘获中存在的问题并提出了一些展望. 论文工作有助于推动FEH-TENG在流体能量俘获领域的发展以及促进相关研究人员对该领域的认识.
    Abstract: The fluid mechanical energy including air kinetic energy and liquids kinetic energy in the environment is one of the most abundant and important clean energy. Through different energy harvesting technologies such as electromagnetic power generation technology and piezoelectric energy harvesting technology, the aforementioned clean fluid energy can be successfully converted into electrical energy and used by human. Since the triboelectric nanogenerator (TENG) was invented in 2012 year from the research lab leaded by Zhonglin Wang, the triboelectric nanogenerator has become one of the most important energy harvesting technology and has been applied to fluid mechanical energy harvesting. This paper comprehensively reviews the current research status of energy harvesting by fluidic energy harvesting TENG (FEH-TENG). The principle of charge transfer between triboelectric materials in FEH-TENG and the basic working mode is introduced. On harvesting air kinetic energy, as the mechanism of Flow induced vibrations (such as vortex-induced vibration, gallop, flutter, and wake galloping, etc.) can effectively transfer fluidic energy into mechanical energy, which is quite proper in designing the energy harvesting structure, in this work, the research progress and various energy harvesting structures of FEH-TENG in wind energy and flow-induced vibration energy harvesting are summarized. In the aspect of liquid kinetic energy harvesting, the research work of FEH-TENG utilized in wave and raindrop energy harvesting is also summarized. Furthermore, the research progress of the hybrid energy harvesting system based on FEH-TENG and optimization of triboelectric materials in improving the energy harvesting efficiency of FEH-TENG has been summarized. Then, the application of FEH-TENG in different engineering fields is introduced. Finally, the current existing problems of the FEH-TENG while collecting the fluid mechanical energy in harvesting are discussed and some perspectives for the future development of FEH-TENG are provided. This work is helpful to promote the development of FEH-TENG in the research fields of fluid mechanical energy harvesting and promote the understanding of relevant researchers in this research fields.
  • 化石燃料过度消耗引起的能源危机成了世界面临的最严峻问题之一, 探索从自然界中获取清洁能源是当前重要的研究热点[1,2]. 地球上大气层、海洋、河流等都蕴含巨大的清洁环境能源, 这些流体所包含的机械能可通过不同的能量俘获技术转化为电能, 为人们的日常生活、微机电系统和环境中的各类监测传感器等提供电力支持[3-6].

    太阳能作为一种清洁能源, 太阳能发电受天气影响十分严重[7]. 研究人员利用热电效应将环境中的废热能转化为电能为物联网设备供电, 但热电技术容易受到环境温差的限制, 应用范围有限[8]. 风能是环境中极为丰富的一种清洁能源, 学者们基于电磁感应原理对风能俘获进行了许多研究并且取得了相当丰富的成果[9-13]. 随着无线传感器网络和微机电系统 (micro electro mechanical systems, MEMS) 技术的发展, 研究人员利用压电效应来俘获风能, 取得了颇为丰富的研究成果[14-19]. 此外, 随着摩擦纳米发电机(triboelectric nanogenerator, TENG)的发明和兴起[20], 其在自供电系统中展现出的巨大潜力引起了研究人员们广泛关注. 两种材料间的接触起电和静电感应耦合效应是摩擦纳米发电机的基础. 作为一种新型能量俘获技术, 摩擦纳米发电机自发明以来在风能俘获转换中获得广泛的研究及应用[21-25]. Jiang等[26]利用基于银纳米颗粒的摩擦纳米发电机俘获风能, 结合电源管理电路和锂电池开发了自供电单元. 当发生内、外部绕流时, 流体和固体之间会由于流固耦合效应从而发生相互作用, 从而产生流致振动现象. 流致振动主要包括涡激振动、驰振和颤振等[27-28], 上述几种振动均可发生共振性质的极限环振荡, 其蕴含的振动能量亦可有效通过摩擦纳米发电机来转化为电能[29-30]. 除了风能之外, 摩擦纳米发电机在液体能量俘获中也展现出了巨大的潜力及获得了丰富的研究成果[31-32], 包括在波浪[33]、水流[34]和液滴[35]等方面的能量俘获. Wang等[36]基于摩擦纳米发电机开发了用于船舶姿态监测的传感器, 所设计的装置坚固、自供电、制造工艺简单成本较低. Jiang等[37]设计了一种在圆柱壳体内摆动的摩擦纳米发电机并用于俘获超低频波浪能, 在单次外部触发激励下实现了88 s的长时间俘能摆动. 通过对电容充电实现为温度计和无线发射机等设备供电. Helseth[38]将滴液摩擦纳米发电机应用于自供电水滴计数器的设计中. Jiang等[39]参照树木叶子设计了一种摩擦纳米发电机来俘获环境机械能, 并通过并联摩擦纳米发电机来提升短路电流. 水滴流为24 ml/s时, 并联4个摩擦纳米发电机可产生峰值为18 μA的短路电流. 鉴于摩擦纳米发电机在流体能量俘获方面的巨大潜力和所取得的丰富成果, 因此有必要对基于摩擦纳米发电机的流体能量俘获研究进展进行综述.

    本文对基于摩擦纳米发电机的流体能量俘获的研究现状进行综述. 首先, 综述了流体能量俘获摩擦纳米发电机 (fluidic energy harvesting TENG, FEH-TENG) 的基础理论和不同的界面之间的工作模式. 接着综述了FEH-TENG在自然风能以及流致振动能量俘获中的研究和应用. 在液体能量俘获中综述了以波浪能和液滴能为基础的FEH-TENG的研究现状. 综述了基于FEH-TENG的混合能量俘获系统. 接着介绍了摩擦电材料在提升能量俘获效率方面的研究以及FEH-TENG的应用现状. 最后讨论了目前存在的一些问题并提出一些展望.

    摩擦起电和静电感应是摩擦纳米发电机的基础. 对于晶态类电介质材料 (金属、半导体等) , 其接触起电的电荷转移过程可通过能带论的表面状态模型描述[40], 如图1所示. 材料1和材料2是摩擦纳米发电机的两种接触材料, 其中一种是绝缘体并且两种材料具有不同能带, 即有不同的导带(Ec) 和价带(Ev) 及表面态的中间能级 (En). 接触起电的过程如下: 接触前, 材料1中被占据的表面态比材料2中未被占据的表面态具有更高的能量, 如图1(a) 所示;材料1和材料2发生接触后, 部分电子从材料1的表面转移到材料2的表面而发生接触起电, 如图1(b)所示;当两种材料分离后, 转移到材料2的电子不会全部立即转移回材料1中, 这样材料1和材料2上就产生了净正电荷和净负电荷. 转移的电荷受到表面态束缚, 同时材料的电导率低电荷自由流动受限[1]. 因此, 材料1和材料2分离后, 通常这些电荷会长时间的留在材料的表面上.

    图  1  电荷转移的表面状态模型[40]
    Figure  1.  Surface states model of charge transfer[40]

    对于一些非晶态电介质材料 (如木材、动物皮毛和头发等) 的接触起电则无法用表面状态模型来描述. 针对这一问题, Xu等[41]在试验的基础上提出了一般原子和分子水平上的接触起电模型, 如图2所示. 其中, A和B代表两种材料的不同原子, 一个原子可以用一个势阱描述, 外层电子受到原子的束缚形成电子云. 图2(a) 中两电子云之间的距离为d, EA和EB分别是A和B原子中电子的占据能级, E1和E2分别是电子从材料A和B表面逃逸所需的势能, EA和EB分别小于E1和E2. 当材料A与材料B接触时, 两原子的距离变小电子云发生重叠, 接触前的单势阱就变成了不对称的双势阱, 电子便从材料A中转移到材料B中(图2(b)). 在材料A和材料B分离后, 温度变化不大时, 材料B中的能量屏障E2使得从材料A中转移过来的电子大部分被保留下来. 材料A和B之间发生接触起电(图2(c)). 图2(d)表示随温度上升, 原子B中的电子发生逃逸转移过程.

    图  2  一般材料接触起电的电子云−势阱模型[41]
    Figure  2.  An electron-cloud–potential-well model of general material contact charged[41]

    上述中描述的是不同材料之间的接触起电过程, 实际上在同种材料中也是会产生接触起电的. Xu等[42]研究了同种材料间的接触起电的机理, 提出了具有曲率效应的同种材料表面状态模型, 如图3所示. 根据能带理论, 表面为理想平行的两种材料具有相同的最低空位分子轨道和最高占据分子轨道, 表面态的中间能级(En)也相同, 如图3(a)所示. 实际上材料的微纳尺度表面特征是存在一定曲率的, 如图3(b)中材料A的凸面和材料B的凹面. 材料A的凸面中的En移到较图3(a)低的水平, 而材料B凹面中的中En则移到较图3(a)高的水平, 因此产生了能级差. 当凸面与凹面接触时, 材料B中高能态的电子就转移到材料A中, 见图3(c). 材料分离后转移到A中的电子将保留在材料A中, 见图3(d).

    图  3  同种材料间的接触起电机理[42]
    Figure  3.  Contact charging mechanism between the same material[42]

    根据接触界面材料的不同, FEH-TENG可分为固−固接触式、固−液接触式和液−液接触式摩擦纳米发电机[3]. 其中, 固−固接触式和固−液接触式摩擦纳米发电机有很多相似的物理特征并且具有相同的工作模式. 根据电介质层的运动方式和电极的不同, 摩擦纳米发电机的工作方式可分为接触分离模式、单电极模式、横向滑动模式和独立模式四种[43-45], 如图4所示. 接触分离模式(图4(a))是在FEH-TENG中应用比较广泛的一种工作模式, 在周期载荷作用下两种材料间发生周期性的接触和分离, 两个电极之间的电势变化驱动一个电极中的自由电子经外负载电路流向另一电极以平衡电场. Lei等[46]设计了一种接触分离模式的蝶形摩擦纳米发电机(图4(a))用于俘获波浪能量, 该装置的短路电流和开路电压可达到75.35 µA和707.01 V. 单电极模式(图4(b))的一端为金属电极 (常与电介质材料相连) , 另一端为电介质材料或带电液滴. 该模式依靠自由端电介质和带电液滴来驱动电极和大地之间的发生电荷交换. Yang等[47]应用单电极模式摩擦纳米发电机(图4(f)) 研究了液滴动态运动下的电流输出特性, 指出液滴在摩擦电层表面上的跳动导致一个正负电流峰, 液滴从摩擦电表面脱离导致另一个负电流峰. 横向滑动模式 (图4(c))的结构组成与接触分离模式相同, 但界面间的运动变为横向滑移. 接触面积变化产生电势差驱动一端电极中的自由电子通过外电路流向另一端电极. 图4(g)是Xia等[48]提出的一种基于横向滑移模式的堆叠式摩擦纳米发电机, 单个运动时的开路电压为1000 V, 短路电流为42 μA. 相同条件下4个单元的短路电流增加到了157 μA. 独立模式 (图4(d))包含一个自由移动的电介质层和两个固定电极, 电极之间存在间隙. 电介质的移动改变了电位分布而驱动电子在电极之间流动. 该模式在风能和波浪能俘获中的应用十分广泛, 常用的结构设计有圆盘形式浮球形式等[49-50]. 图4(h)是一种基于独立模式的波浪能采集摩擦纳米发电机[51]. 波浪作用在浮球上, 中间的电介质球在两个电极之间来回运动驱动电荷转移.

    图  4  摩擦纳米发电机的四种基本工作模式[43-45]. (a) 接触分离模式, (b) 单电极模式, (c) 横向滑动模式, (d) 独立模式, (e) 蝶形摩擦纳米发电机[46], (f) 滴液摩擦纳米发电机测试系统[47], (g) 滑纸型摩擦纳米发电机[48], (h) 球形摩擦电纳米发电机[51]
    Figure  4.  Four basic working modes of the TENG[43-45]. (a) Contact-separation mode, (b) single-electrode mode, (c) lateral sliding mode, (d) freestanding mode, (e) butterfly-inspired TENG[46], (f) water droplet-driven TENG measuring system[47], (g) sliding paper TENG[48], (h) spherical TENG[51]

    图5所示为Nie等[52]提出的一种基于导电液体膜的液液型摩擦纳米发电机. 液膜接地模式中, 液滴与空气摩擦产生的正电荷在与接地液膜接触时转移到液膜上, 自由电子从地面流向液膜以中和液滴的电荷. 而液膜的自修复特性则可以保证其在液滴连续穿越过程中不被破坏.

    图  5  液液型摩擦纳米发电机[52]
    Figure  5.  The TENG with liquid-liquid contact interface[52]

    风能作为一种清洁可再生的自然资源, 从风能中获取能量是一个研究热点. 与传统风力发电机一样, 摩擦纳米发电机在俘获风能时也需要一定的机械传动形式将风力转换为摩擦电材料之间的相对运动. 在风能采集中通常采用的是固−固接触式摩擦纳米发电机, 工作模式包含了前述中的四种工作模式[49,53-55]. Gao等[56]采用转轴和棘轮将风力产生的旋转运动转化为摩擦电材料间的接触分离运动, 以60 r/min的转速运行345600个周期 (一个周期为接触分离一次) 后开路电压未见明显衰减, 结构的耐磨损性能较好. 通常自然风力输入是一种不稳定的机械能, 因此, 为获得稳定电能输出, Wang等[57]设计了一种重力摩擦纳米发电机(gravity triboelectric nanogenerator, G-TENG), 如图6(a)所示. 风斗将风的动能经驱动单元转化为质量块的重力势能, 质量块向上触发开关后向下移动, 同时转子也开始转动. G-TENG实现自然风能的稳定采集并转化为电能, 短路电流峰值的标准差小于0.31 μA. 试验显示G-TENG只需14 s即可将10 μF电容从0 V充电至5 V, 并且G-TENG成功连续的点亮LED板. 虽然该结构能稳定输出, 但存在间断性输出的不足.

    图  6  自然风能俘获的摩擦纳米发电机
    Figure  6.  The natural wind energy collected by TENG

    在风能量俘获和自供电式风速监测研究方面, 大的工作风速范围是十分必要的, Liu等[58]设计的基于摩擦纳米发电机的风速传感器, 在风速15 m/s到25 m/s的范围内灵敏度为1.79 μA·m/s, 电流与风速呈现很好的线性关系. Lee等[59]设计的一种可堆叠的圆盘型风力滚动式摩擦纳米发电机(disk-shaped wind-rolling TENG, DWR-TENG)如图6(b)所示. 八块气流导向板以一定的角度和间距围成一圈, 导板之间的缺口同时充当气流的入口和出口, 气流在中心区域形成的旋涡带动静电球沿着电极转动. 轻质的带电球使DWR-TENG工作的最高与最低风速差达到11 m/s. 4个DWR-TENG单元在最高17.5 m/s风速下运行时获得了平均电压为5 V稳定直流输出. 此外, 针对弱风条件下难以发电的问题, Zaw等[60]提出了一种带状的风驱动摩擦纳米发电机. 在最小工作风压为0.05 MPa时, 开路电压达到3.5 V、短路电流为300 nA. 在外部负载电阻为5 MΩ的条件下输出功率密度为0.64 mW/m3. 该摩擦纳米发电机运行105个周期后输出整流电流未见明显衰减. Ren等[61]设计的微风驱动的摩擦纳米发电机, 在风速为0.7 m/s时的平均输出功率达到20 mW/m3.

    传统研究认为流致振动会导致结构的损坏, 从而在工程中应予以消除, 然而另一方面, 近年来研究者证明俘获流致振动能也可以为微机电系统或传感器等提供能量. 流致振动能量俘获通常基于涡激振动、驰振、颤振和尾流驰振等现象[62]. 涡激振动的特征表现为流体绕流钝体时, 在钝体的后方会产生周期性的尾涡, 并且钝体也会产生周期性振动[63]. 在涡激振动能量俘获方面, Zeng等[64]设计的一种涡激振动摩擦纳米发电机, 如图7(a)所示. 该摩擦纳米发电机由旋转接触分离式摩擦纳米发电机组件、梯形结构钝体和悬臂梁组成, 摩擦纳米发电机组件封装在梯形的钝体中, 钝体则安装在悬臂梁上. 风速为7.8 m/s时, 使用该样机对22 μF的电容器充电到2 V电压用时为43 s. 风速为2.9 m/s时可点亮超过200个LED灯. Ren等[65]设计了一种基于涡激弹性扭转与驰振耦合的摩擦纳米发电机, 如图7(b)所示. 两个弧形框架与负摩擦层相连, 超拉伸弹性电极夹在两个框架之间. 在电极膜上引入穿孔来增强气动弹性效应, 优化了该摩擦纳米发电机的能量俘获效率, 振动频率和振幅提高了20%. 风速为2.5 m/s时优化后的开路电压和短路电流均增加了约25%. 驰振是一种典型气动不稳定引起的自激振动现象, 具有频率低和振幅高的特性[66]. 进行驰振能量俘获时需要考虑自激振动引起的系统不稳定, Wang等[67]设计一种压电−摩擦电耦合的驰振风能俘获结构(synergetic hybrid piezoelectric-triboelectric wind energy harvester, SHPTWEH), 如图7(c)所示. 通过在悬臂梁两边设置边界提升结构的稳定性以及提高了结构的有效风速带宽. 风速为14 m/s下的SHPTWEH总平均输出功率为0.24 mW. 颤振是高速流场中的二维平面失稳现象, 也是一种典型的发散性极限环振动[68]. 摩擦纳米发电机在颤振能量俘获中应用较多, 主要结构设计有旗帜型摩擦纳米发电机[69-70]、薄膜型摩擦纳米发电机[71-72]、条带型摩擦纳米发电机[73]等. 在颤振能量俘获方面, 杨恩等[74]研究了薄膜拍打型摩擦纳米发电机的风能俘获效率, 摩擦纳米发电机的结构如图7(d)所示. 结果表明提高风速可增加薄膜的拍打频率, 并提高短路电流. 风速为4.7 m/s时双薄膜摩擦纳米发电机的开路电压达到73V, 是同等长度单薄膜开路电压的1.4倍. 风速10.6 m/s, 负载电阻的阻值为50 MΩ时功率最大约为168 μW.

    图  7  流致振动能俘获
    Figure  7.  The flow-induced vibration energy collection

    表1总结了当前FEH-TENG在气流动能(包括风能和流致振动能)俘获的研究成果. 在风能俘获中, FEH-TENG的基本设计思路为使用机械传动结构直接或间接地将风力转化为摩擦电材料间的运动(包括接触分离和相对滑动). 值得注意的是, 固−固接触式摩擦纳米发电机中, 材料滑动造成磨损是不可忽视的问题[76]. 因此, 延长摩擦电材料的耐久性并保持高输出性能是设计FEH-TENG的重点. 在流致振动能量俘获中, 应考虑扩大FEH-TENG的风速范围及保持结构稳定性.

    表  1  FEH-TENG气流动能俘获研究总结
    Table  1.  Research summary of air-flow energy collection by FEH-TENG
    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit currentPeak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [60] contact-separation Al+PTFE 3.5 300 nA 0.64 mW/m2 (5 MΩ) wind 0.05 MPa
    2 Ref. [53] contact-separation and
    lateral sliding
    Al+PTFE 360 (Vocpp) 130 A (Iscpp) 245 mW (2 kΩ) wind 6 m/s
    3 Ref. [57] freestanding Cu+FEP 500 15 μA 200 nC wind
    4 Ref. [55] contact-separation Al+FEP 1150 7.5 μA 0.95 mW (108 Ω) wind 1.8 m/s
    5 Ref. [54] freestanding Al+FEP 120 40 μA 0.82 mW/26 mW/m2
    (4 MΩ, 12 units in parallel)
    wind 25 m/s
    6 Ref. [61] contact-separation Al/FEP+AgNWs NFs 20 mW/m3 † wind 0.7 - 6 m/s
    7 Ref. [49] freestanding Cu+PTFE 1190 25 μA 9.1 mW (56 MΩ) wind 2.7 m/s
    8 Ref. [65] contact-separation AgNWs NFs+FEP 190* 23 μA* FIV 2.5 m/s
    9 Ref. [70] freestanding Carbon+PET 20.8 6.8 μA 36.72 μW/0.0408 mW/cm3 (5 MΩ) FIV 7.5 m/s
    10 Ref. [64] contact-separation Al+PTFE 270 7.6 μA 1.3 mW (44 MΩ) FIV 2.9 m/s
    11 Ref. [75] contact-separation Nylon+FEP 220 7 μA 7.9 μW (50 MΩ) FIV 2.0 m/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标*表示文献图中的近似值, 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript * indicates the approximate value in the literature chart, and the superscript indicates the average value.
    下载: 导出CSV 
    | 显示表格

    波浪能是一种在世界范围内广泛分布的可再生能源. 波浪能摩擦纳米发电机通常包括固−固接触式摩擦纳米发电机, 其设计是将摩擦电材料置于封闭结构中, 以一定的机械传动形式将液体动能转化为摩擦电材料间的接触分离或相互滑动, 通过对内部结构优化来提升能量俘获效率;固−液接触模式波浪能俘获中, 通过液体与摩擦电材料动态接触驱动电荷在电极之间转移, 对结构部分进行优化来提升能量俘获效率[77-79]. 浮球式摩擦纳米发电机是一种常用波浪能俘获结构, 对内部结构进行优化以提升能量俘获效率是研究的重点. Tao等[80]设计了一种折纸式波浪能摩擦纳米发电机, 通过增加接触面积来提升发电效率, 结构如图8(a)所示. 两种金属条均由50 μm/25 μm/50 μm厚的铜/LCP (liquid crystal polymer)/铜复合成的类似三明治结构. 六个折纸式摩擦纳米发电机可实现全方向波浪能量俘获, 波激励载荷为2 Hz, 负载为60 MΩ时的最佳输出功率为55.4 μW. Liang等[81]设计一种特殊浮球式能量俘获器, 球内由6个折叠式的多层摩擦纳米发电机组成, 如图8(b)所示. 水波激励频率为1 Hz时该能量俘获器最大输出电流和电压分别为200 μA和250 V, 外负载1 MΩ时最大输出功率4.81 W/m3. 在全方向波浪能俘获方面, Zhang等[82]设计的管状摩擦纳米发电机, 通过液面的上升和下降控制电介质材料的滑动接触, 灵敏度达到2530 mV/mm, 为实现海浪信息 (波高、波周期、波频率、波速、波长和波陡) 的监测提供了支持.

    图  8  (a)-(c) 水波能和(d) 液滴能俘获的摩擦纳米发电机. (a) 折纸式摩擦纳米发电机及其输出功率[79], (b) 弹簧辅助式多层结构球形摩擦纳米发电机及其输出特性[80], (c)圆柱型摩擦纳米发电机[84], (d)滴液式摩擦纳米发电机及其优化设计与输出性能[85]
    Figure  8.  (a)-(c) The wave and (d) droplet energy collected by TENG. (a) the origami-inspired TENG and its output power[79], (b) the spherical TENG with spring-assisted multilayered structure and its output performances[80], (c) the cylindrical TENG[84], and (d) the L-TENG and its optimal design scheme and output performance[85]

    降低水波能量俘获的起始频率对扩大FEH-TENG的应用范围至关重要. Wu等[83]设计了跷跷板型低频波浪能摩擦纳米发电机, 在0.8 Hz波激励载荷, 俯仰角为27°工况下最大开路电压为760 V, 短路电流为4 μA. Feng等[84] 设计了一种在圆柱壳内摆动的低摩擦阻力摩擦电纳米发电机, 如图8(c)所示. 内部转子由轴承组件支撑并与外部定子结构接触, 该结构在0.033 Hz水波作用下的峰值功率密度为231.6 mW/m3, 平均功率密度为39.8 mW/m3.

    水滴在环境随处可见, 常采用固−液接触式摩擦纳米发电机俘获水滴能, 电极密封在电介质层和基板层之间. 工作模式包括接触分离式[86]、单电极式[87]和独立式[88]. Zhong等[85]设计了一种俘获滴液能量的摩擦电纳米发电机(liquid triboelectric nanogenerator, L-TENG), 结构如图8d(ii)所示. L-TENG由环氧玻璃纤维基板、Au+Cu格栅电极层和聚四氟乙烯(PTFE)膜三部分组成. 该研究中分析了不同L-TENG长度的能量俘获效率. 无折叠单电极板(图8d(i))长度为0.2 m, 0.4 m和0.6 m时的最大峰值功率密度分别为95.56 μW/m3 , 62.82 μW/m3和 15.7 μW/m3. Zhong等[85]还对L-TENG进行折叠设计以提高能量输出密度和减小器件尺寸, 如图8d(ii)所示. 0.4 m和0.6 m的单电极板分别折叠为两段和三段. 0.4 m折叠后的最大峰值功率密度为69 μW/m3, 0.6 m折叠后的最大峰值功率密度为35.02 μW/m3. 对于带电液滴中的固体颗粒对输出性能的影响, Yang等[89]采用单电极式摩擦纳米发电机研究了液滴中固体颗粒大小和质量分数对输出电流的影响, 指出增加液滴中颗粒的直径和质量分数会造成液滴预充电荷量减小, 进而减小接触起电的峰值输出电流. 此外, 还提出了将深度学习方法与该滴液摩擦纳米发电机相结合的自供电式实时泥沙人工智能监控系统. 上述研究中设计了不同的结构形式来优化波浪能和液滴能的俘获效率以及降低发电的起始频率, 然而所设计的结构的整体输出电流仍是处于微安级, 平均输出功率较小. 因此, 提升THE-TENG的输出性能仍是重要研究点.

    表2总结了当前FEH-TENG在液体(包括波浪和水滴)动能俘获的研究成果. 固−固接触式中, 降低材料磨损延长摩擦纳米发电机的耐久性仍是设计的核心. 固−液接触式摩擦纳米发电机有助于降低材料间的机械磨损, 但由此产生的是输出电压减小. 此外固体结构的安装形式也是设计的重点研究内容. 液−液接触型摩擦纳米发电机对可以有效降低材料间磨损, 但两种液体材料间的相互接触和分离运动依然是当前设计难点, 关于液−液接触型摩擦纳米发电机的报道较少.

    表  2  FEH-TENG液体动能俘获研究总结
    Table  2.  Research summary of liquids energy collection by FEH-TENG
    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit
    current
    Peak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [84] freestanding Cu+FEP 120 1.52 μA 110 μW/231.6 mW/m3 (100 MΩ) wave 0.033 Hz
    2 Ref. [76] contact-separation Cu+FEP 419 56.7 μA 4.1 mW (10 MΩ) wave 1.0 Hz
    3 Ref. [31] freestanding Al+FEP 1100 50 μA 5.2 mW/6.6 W/m3
    (20 MΩ)
    wave 1.75 Hz
    4 Ref. [79] contact-separation Cu+FEP 1004 (Vocpp) 110 μA 11.2 mW (6.28 MΩ) impulse excitation 9.3 g
    55.4 μW (60 MΩ) wave 2 Hz
    5 Ref. [80] contact-separation Cu+FEP 250 200 μA 8.5 mW/4.81 W/m3
    (1 MΩ)
    wave 1.0 Hz
    6 Ref. [32] freestanding water+PTFE/ZnO 16 10 μA droplet continuous
    7 Ref. [86] contact-separation Cu+PTFE 21.6 16 W (1 MΩ) droplet (6 mm) single
    8 Ref. [87] single-electrode water+PTFE 68.1 84.8 μA droplet (120 μL) single
    9 Ref. [88] contact-separation Cu+PTFE 42.2 95.4 A droplet 22 mL/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV 
    | 显示表格

    为了高效地俘获流体动能, 将摩擦纳米发电机与压电、电磁和太阳能等相结合的混合能量俘获技术受到了许多研究者的关注, 研究成果包括了混合压电摩擦纳米发电机[90]、混合电磁摩擦纳米发电机[91-92]和混合压电−电磁摩擦纳米发电机[93]等. 表3总结了当前混合式FEH-TENG能量俘获的研究成果. 可以看出, 研究较多的是基于摩擦电、压电和电磁之间的耦合能量俘获系统. 在气流和液体动能俘获中, 混合式FEH-TENG的设计思路在摩擦纳米发电机四种工作模式基础上耦合其他能量俘获技术, 结构设计灵活.

    表  3  混合式FEH-TENG能量俘获研究总结
    Table  3.  Summary of hybrid FEH-TENG energy harvesting
    No.AuthorsModeMaterialOpen-circuit voltage/VShort-circuit currentPeak power/power density (resistance)Excitation typeExcitation value
    1 Ref. [93] TENG Al+PTEF 360 (Vocpp) 128 A (Iscpp) 1.67 mW (10 MΩ) wind 6 m/s
    PENG Cu+PVDF 65 (Vocpp) 135 A (Iscpp) 1.38 mW (330 KΩ)
    EMG magnet+copper coil 23.2 (Vocpp) 87 mA (Iscpp) 268.6 mW (180 Ω)
    2 Ref. [98] TENG nylon+FEP 683 (Vocpp) 1.8 mW/2.7 W/cm2 (60 MΩ) wind 12 m/s
    EMG magnet+copper coil 47.4 (Vocpp) 62 mW (660 Ω)
    3 Ref. [99] TENG water+FEP 5 droplet single
    TENG Al+PTEF 50 6 μA wind 13 m/s
    solar cell 4.2 27 μA solar 900
    4 Ref. [95] PENG Mo+AlN 1.5 (Vocpp) 9 mW/m2 (104 kΩ) droplet 3.33 mL/s
    TENG Ti/Au+parylene C
    5 Ref. [100] TENG water+sino-fluorine 2.6 μW/cm2 droplet 30 μL
    PENG (pyroelectricity) silver+PVDF+silver 27 temperature difference 40 ℃
    6 Ref. [101] TENG Al+PTFE 760 4 μA 55 mW/m2 (353 MΩ) wave 0.8 Hz
    EMG magnet+copper coil 2 10 mA
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV 
    | 显示表格

    压电纳米发电机(piezoelectric nanogenerator, PENG)是利用压电效应将机械振动能转化为电能的能量俘获结构, 具有结构简单且易于集成的优点. Jurado等[94]设计的一种用于俘获波浪冲击动能的耦合压电−摩擦电效应的能量俘获器, 如图9(a)所示. 压电部分位于椭球形结构的中间, 摩擦电部分为接触分离式. 与使用单个摩擦电和压电纳米发电机相比, 该结构的输出性能分别提高了2.24和3.21倍. Mariello等[95] 研究使用混合压电摩擦纳米发电机俘获水滴能量, 能量俘获器由生物相容性压电陶瓷和软聚合物材料制成, 如图9(b)所示. 结果表明, 水滴以12 Hz的频率垂直滴落时该俘获器最大可产生1.8 V的峰值电压. 另外, 在提升风能俘获效率的研究上, Zhao等[96]设计了用于风能俘获的混合压电−摩擦电纳米发电机(hybrid piezo/triboelectric nanogenerator, H-P/TENG). 结构主要分为风能采集和能量转化两部分. H-P/TENG由双晶片压电纳米发电机与摩擦纳米发电机构成, 如图9(c)所示. 转速为100 r/min时, H-P/TENG的开路电压为200 V, 稍高与单个摩擦纳米发电机的开路电压. H-P/TENG的短路电流与PENG的相近, 为400 μA. 匹配电阻为1 MΩ时的平均输出功率为10.88 mW.

    图  9  混合式摩擦纳米发电机. (a) 混合压电−摩擦纳米发电机俘获波浪冲击能[94],(b) 柔性混合压电-摩擦纳米发电机及不同滴液频率时输出特性[95],(c) 双晶片压电纳米发电机与摩擦纳米发电机构成的风能俘获器[96],(d) 混合电磁与摩擦纳米发电机水波能俘获器[97],(e) 混合电磁与摩擦纳米发电机风能俘获器[98]
    Figure  9.  The TENG with hybrid energy collection modes. (a) The collection of wave impact energy by hybrid Piezo-triboelectric nanogenerator[94], (b) a flexible hybrid Piezo-triboelectric nanogenerator and its output characteristics with different droplet frequencies[95], (c) a wind energy collector with bimorph-based piezoelectric and TENG[96], (d) a water wave energy collector with EMG and TENG[97], and (e) a wind energy collector with EMG and TENG[98]

    电磁式发电机(electromagnetic generators, EMG)与摩擦纳米发电机结合可以拓宽能量俘获时的运动频率及提升俘获效率. Kim等[97]设计了电磁和摩擦电组合的水波能量俘获结构, 如图9(d)所示. 电磁发电机在运动频率为1.5 Hz时开始产生电能输出, 高于摩擦纳米发电机的0.5 Hz. 当摩擦纳米发电机单独俘能时, 在1 m/s2的加速度和100 MΩ负载下可产生85 nW的最大峰值功率. 两部分分别整流后可产生峰值为8 V和17 mA的混合输出, 优于两部分的单独能量俘获效率. Kim等[97]还演示了在漏油检测中的实际应用. 图9(e)所示是基于混合电磁摩擦纳米发电机的风能俘获器[98]. 在风速为12 m/s外负载为660 Ω时, EMG的最大输出功率为62 mW. 相同风速下, 摩擦纳米发电机在外负载为60 MΩ时的最大输出功率达到1.8 mW. 试验中EMG和摩擦纳米发电机分别点亮了360和240个LED灯, 风能俘获效率提升明显.

    此外, Rahman等[93]报告了一种合并了电磁发电机、压电发电机和摩擦纳米发电机的风能俘获装置, 并展示了用于地铁隧道时刻表供电的良好效果. 除了与压电效应和电磁相结合外, 研究者还研究了其他类型的复合增强型摩擦纳米发电机用于提升流体能量俘获效率. Roh等[99]和Zhang 等[102] 将太阳能俘获结构与摩擦纳米发电机结合, 用以提升在水波、液滴和风能中的俘获效率. Jiang等[100]设计的结合了热释电的混合摩擦纳米发电机并用于俘获热滴液能, 滴液与室温温差为40 °C时获得2.6 μW/cm2的最大功率密度输出.

    自然界中的许多材料都有摩擦起电的现象, 这些材料的电子亲和能力不同, 因此可以作为摩擦纳米发电机的摩擦电材料[103-104]. 在摩擦电材料序列中选择距离较大的两种材料是开发高性能摩擦纳米发电机的直接有效的方法[105]. 除了对摩擦纳米发电机的结构进行优化外, 还可以改进摩擦电材料的性质以提升输出性能. 对摩擦电材料性质的优化可以归纳为改变摩擦电材料的表面形态和改变材料内部性质.

    表面粗糙度作为摩擦电材料性能的重要影响因素, 较大的表面粗糙度可以增加摩擦电材料之间的接触面积而产生更多的摩擦电荷. Nafari和Sodano[106]研究了摩擦电材料的微/纳米尺度表面改性效应, 对聚二甲基硅氧烷 (polydimethylsiloxane, PDMS) 和金的表面进行微/纳米级表面修饰增加表面粗糙度, 经修饰后的功率输出是修饰前的两倍. 然而在固−液接触界面[107]的摩擦纳米发电机中, 增加固体材料部分的表面粗糙度造成表面疏水性增加反而会降低低频能量俘获的输出性能. 此外, 材料表面改性还包括将表面制成纳米线结构[108]或表面阵列结构[109]以产生更多的摩擦电荷.

    另一方面, 改变摩擦电材料内部性质可以提升材料的介电性能而获得更好的电能输出. 耿魁伟等[110] 研究了在聚酰亚胺(PI)膜之间嵌入MoS2Graphene/复合纳米材料电子接收层时对摩擦纳米发电机输出性能的影响. 指出电子接收层可以提高负摩擦层的表面电子密度和促进电荷转移. 在最佳外部负载的情况下, 嵌入MoS2/Graphene电子接收层后的摩擦纳米发电机 (TENG-M/G)的最大输出功率是电子接收层为聚酰亚胺膜的摩擦纳米发电机 (TENG-PI)的23倍. Ye等[111] 报告了液态金属 (镓)对聚丙烯腈聚合物摩擦电材料的输出性能的影响. 指出在聚丙烯腈聚合物摩擦层中加入少量的液态金属可以显著提高摩擦纳米发电机的输出性能. 然而液态金属超过一定量后材料的导电性能增强和接触起电区域减小反而导致输出性能急剧降低. Wang等[112] 制作了基于聚乙烯亚胺(PEI)和聚乙烯醇(PVA)的正极摩擦电材料, 并在材料中引入金纳米颗粒提升复合材料的介电性能. 设计的摩擦纳米发电机的开路电压为161.1 V, 短路电流密度为20 mA/m2, 峰值功率密度达到17.3 W/m2. 此外, 在固−液接触摩擦纳米发电机中的液体性质对输出性能也有影响. Nie等[113]的水溶液与聚四氟乙烯(PTFE)的接触起电机理研究结果表明, 水溶液中少量增加离子浓度可以促进电荷转移. 然而随着离子浓度增加, 离子聚积在固液界面上产生的屏蔽效应反而使电子转移减少. 上述研究聚焦在摩擦电材料的表面形态和内部性质进行优化来提升输出性能, 为开发高性能的FEH-TENG提供了指导.

    FEH-TENG作为一种新型的环境能量俘获技术, 其结构简单、重量轻、可选材料丰富且成本低, 受到了学者们的广泛关注并取得了丰富的研究成果. 所报道的FEH-TENG包括了在小型电源、环境监测、生物医学和物联网领域中的应用研究.

    小型电源是FEH-TENG的一个重要应用方向. 研究人员将FEH-TENG与电能存储单元结合设计为自充电单元并为小型电子设备提供电能[26,114]. 在设备健康防护中, 利用FEH-TENG可构建全天候的自供电型阴极保护系统. Sun和Seok[115]设计了基于FEH-TENG的自供电阴极保护电源, 所建立的摩擦纳米发电机在相对湿度为95%负载为20 MΩ下的最大输出功率为1.74 mW. 被保护金属 (A3钢) 与该电源连接后的表面开路电位压降达到了590 mV, 减缓了被连接金属的电化学腐蚀. 在大规模组网的能量俘获应用研究上, Liu等[33]基于球形摩擦纳米发电机研究了波浪能量俘获的大规模发电网络 (如图10(a)所示) , 提出了不同形式的摩擦纳米发电机网络拓扑结构, 研究了电缆电阻和各单元输出相位不同步对网络输出的影响. 研究结果表明, 在水波频率为1.25 Hz, 水深为5 m水域, 该摩擦纳米发电机网络覆盖1 km2可以输出的最大平均功率为14.22 kW.

    图  10  (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121]
    Figure  10.  (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121]
    图  10  (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121] (续)
    Figure  10.  (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121] (continued)

    分析FEH-TENG的环境机械能输入与电能输出之间的关系, 研究人员设计了各种自供电传感器并用于环境中的压力、速度和温度等信息监测[116-118]. Xu等[119]基于单电极模式设计了用于风沙环境下的自供电风沙传输速率传感器, 为荒漠地区的风沙浓度监测和流动能俘获提供了简便的方法. Hu等[120]设计基于固−液接触式摩擦纳米发电机的自供电滴液传感器, 利用材料表面的疏水特性展示了该传感器在医学排液瓶和智能静脉注射监护中的应用 (如图10(b)所示) , 扩展了摩擦纳米发电机的应用场景.

    通过FEH-TENG从周围环境中俘获能量, 为物联网的发展提供了能量解决方案. Chen等[121]设计了毛刷摩擦电纳米发电机并用于俘获风能和水流动能, 此为基础构建了自供电的自动灌溉、天气监测和无线预警系统, 展示了摩擦纳米发电机在智能农业场景中的潜在应用, 如图10(c)所示. Liu等[122]利用混合电磁摩擦纳米发电机、太阳能电池板和蓝牙传感器模块建立了全天候物联网平台, 并将检测到的环境信息发送到用户端.

    摩擦纳米发电机自发明以来, 受到了研究者们的极大关注, 在蓝色能源俘获方面取得了极大的发展. 本文综述了以摩擦纳米发电机为基础的流体 (气体和液体) 能量俘获研究进展. 首先综述了摩擦纳米发电机的理论基础和基本工作模式. 介绍了摩擦纳米发电机在自然流体能量俘获 (风能、流致振动能、水波能和液滴能) 中的研究及应用. 摩擦纳米发电机与现有的能量俘获技术 (压电技术、电磁技术等) 相结合亦可设计为混合能量俘获系统. 最后综述了摩擦电材料方面优化摩擦纳米发电机的输出性能方面的研究成果.

    尽管近几年摩擦纳米发电机在流体能量俘获上有了很大研究进展, 但仍需要注意到现在摩擦纳米发电机存在一些的不足.

    (1) 能量俘获效率问题. 在提升FEH-TENG流体能量俘获效率研究上, 设计高效的摩擦纳米发电机结构、混合能量俘获系统仍是未来的研究方向. 此外, 材料表面电荷密度也是影响俘获效率的重要因素. 目前, 虽然在FEH-TENG流体能量俘获有了一定研究基础, 但是单个摩擦纳米发电机的能量俘获效率还是较低, 一些较大功率电子设备的供电仍然受到限制.

    (2) 输出稳定性问题. 摩擦纳米发电机的一个主要应用方向是为各类户外传感器, 电子设备等提供电能. 与实验室条件相比, 在户外摩擦纳米发电机多为不稳定的随机机械能输入, 产生输出无法驱动电子模块正常工作, 因此输出稳定性是不容忽视的问题.

    (3) 耐久性问题. 利用FEH-TENG俘获流体能量, 摩擦电材料间的机械磨损是影响结构耐久性的一个重要原因, 制约着摩擦纳米发电机的实际工程应用.

    (4) 大规模商用问题. 当前研究的THE-TENG流体能量俘获设备及各类自供电传感器多处于实验室演示阶段, 大规模应用尚处于理论探索阶段, 距离大规模实际应用还有较长距离.

    针对现有技术的不足, 后续的研究可从以下几点采取措施:

    (1) 探索更高效的能量俘获方式. 研究复杂激励下的自适应高效能量俘获结构, 提升输出效率和稳定性. 深入研究与其他能量俘获技术相结合的混合能量俘获技术, 增大发电功率和不同激励源的适应性;

    (2) 探索和改进摩擦电材料. 探索和提升摩擦电材料的耐磨损性能, 提升摩擦纳米发电机的可靠性. 开发新的尚未包含在文献中的新摩擦电材料, 提高两种摩擦电材料的距离. 研究表面电荷提升技术, 设计材料的表面形貌及内部特性、电子接收层和辅助外电路等提高电荷密度, 对于高电荷密度空气击穿问题也需要重点研究应对策略;

    (3) 探索摩擦纳米发电机长期工作稳定性. 基于摩擦纳米发电机的传感器在恶劣环境中的抗腐蚀, 材料耐磨损, 耐热性等也是重点研究的内容. 研究液−液接触型摩擦纳米发电机, 扩大其应用场景.

  • 图  1   电荷转移的表面状态模型[40]

    Figure  1.   Surface states model of charge transfer[40]

    图  2   一般材料接触起电的电子云−势阱模型[41]

    Figure  2.   An electron-cloud–potential-well model of general material contact charged[41]

    图  3   同种材料间的接触起电机理[42]

    Figure  3.   Contact charging mechanism between the same material[42]

    图  4   摩擦纳米发电机的四种基本工作模式[43-45]. (a) 接触分离模式, (b) 单电极模式, (c) 横向滑动模式, (d) 独立模式, (e) 蝶形摩擦纳米发电机[46], (f) 滴液摩擦纳米发电机测试系统[47], (g) 滑纸型摩擦纳米发电机[48], (h) 球形摩擦电纳米发电机[51]

    Figure  4.   Four basic working modes of the TENG[43-45]. (a) Contact-separation mode, (b) single-electrode mode, (c) lateral sliding mode, (d) freestanding mode, (e) butterfly-inspired TENG[46], (f) water droplet-driven TENG measuring system[47], (g) sliding paper TENG[48], (h) spherical TENG[51]

    图  5   液液型摩擦纳米发电机[52]

    Figure  5.   The TENG with liquid-liquid contact interface[52]

    图  6   自然风能俘获的摩擦纳米发电机

    Figure  6.   The natural wind energy collected by TENG

    图  7   流致振动能俘获

    Figure  7.   The flow-induced vibration energy collection

    图  8   (a)-(c) 水波能和(d) 液滴能俘获的摩擦纳米发电机. (a) 折纸式摩擦纳米发电机及其输出功率[79], (b) 弹簧辅助式多层结构球形摩擦纳米发电机及其输出特性[80], (c)圆柱型摩擦纳米发电机[84], (d)滴液式摩擦纳米发电机及其优化设计与输出性能[85]

    Figure  8.   (a)-(c) The wave and (d) droplet energy collected by TENG. (a) the origami-inspired TENG and its output power[79], (b) the spherical TENG with spring-assisted multilayered structure and its output performances[80], (c) the cylindrical TENG[84], and (d) the L-TENG and its optimal design scheme and output performance[85]

    图  9   混合式摩擦纳米发电机. (a) 混合压电−摩擦纳米发电机俘获波浪冲击能[94],(b) 柔性混合压电-摩擦纳米发电机及不同滴液频率时输出特性[95],(c) 双晶片压电纳米发电机与摩擦纳米发电机构成的风能俘获器[96],(d) 混合电磁与摩擦纳米发电机水波能俘获器[97],(e) 混合电磁与摩擦纳米发电机风能俘获器[98]

    Figure  9.   The TENG with hybrid energy collection modes. (a) The collection of wave impact energy by hybrid Piezo-triboelectric nanogenerator[94], (b) a flexible hybrid Piezo-triboelectric nanogenerator and its output characteristics with different droplet frequencies[95], (c) a wind energy collector with bimorph-based piezoelectric and TENG[96], (d) a water wave energy collector with EMG and TENG[97], and (e) a wind energy collector with EMG and TENG[98]

    图  10   (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121]

    Figure  10.   (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121]

    图  10   (a) 球形摩擦纳米发电机工作原理及其大规模发电网络设计[33]. (b)自供电式滴液传感器在(i-ii)智能静脉注射监护和(iii-iv)排液瓶的应用[120]. (c) (i)水流动能和(ii)风能俘获的摩擦纳米发电机及在智能农业中应用; (iii)自供电土壤水分监测系统; (iv)为土壤湿度传感器供电; (v)水位警戒[121] (续)

    Figure  10.   (a) Working mechanism of spherical TENG and its large-scale power generation network[33]. (b) Application of self-powered droplet Sensor in (i-ii) smart intravenous injection monitor and (iii-iv) drainage bottle [120]. (c) The TENGs that collect (i) water flow energy and (ii) wind energy and their application in smart agriculture; (iii) self-powered soil moisture monitoring system; (iv) power the soil moisture sensor; (v) water level alarm[121] (continued)

    表  1   FEH-TENG气流动能俘获研究总结

    Table  1   Research summary of air-flow energy collection by FEH-TENG

    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit currentPeak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [60] contact-separation Al+PTFE 3.5 300 nA 0.64 mW/m2 (5 MΩ) wind 0.05 MPa
    2 Ref. [53] contact-separation and
    lateral sliding
    Al+PTFE 360 (Vocpp) 130 A (Iscpp) 245 mW (2 kΩ) wind 6 m/s
    3 Ref. [57] freestanding Cu+FEP 500 15 μA 200 nC wind
    4 Ref. [55] contact-separation Al+FEP 1150 7.5 μA 0.95 mW (108 Ω) wind 1.8 m/s
    5 Ref. [54] freestanding Al+FEP 120 40 μA 0.82 mW/26 mW/m2
    (4 MΩ, 12 units in parallel)
    wind 25 m/s
    6 Ref. [61] contact-separation Al/FEP+AgNWs NFs 20 mW/m3 † wind 0.7 - 6 m/s
    7 Ref. [49] freestanding Cu+PTFE 1190 25 μA 9.1 mW (56 MΩ) wind 2.7 m/s
    8 Ref. [65] contact-separation AgNWs NFs+FEP 190* 23 μA* FIV 2.5 m/s
    9 Ref. [70] freestanding Carbon+PET 20.8 6.8 μA 36.72 μW/0.0408 mW/cm3 (5 MΩ) FIV 7.5 m/s
    10 Ref. [64] contact-separation Al+PTFE 270 7.6 μA 1.3 mW (44 MΩ) FIV 2.9 m/s
    11 Ref. [75] contact-separation Nylon+FEP 220 7 μA 7.9 μW (50 MΩ) FIV 2.0 m/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标*表示文献图中的近似值, 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript * indicates the approximate value in the literature chart, and the superscript indicates the average value.
    下载: 导出CSV

    表  2   FEH-TENG液体动能俘获研究总结

    Table  2   Research summary of liquids energy collection by FEH-TENG

    No.AuthorsModeMaterialOpen-circuit
    voltage/V
    Short-circuit
    current
    Peak power/power
    density (resistance)
    Excitation
    type
    Excitation
    value
    1 Ref. [84] freestanding Cu+FEP 120 1.52 μA 110 μW/231.6 mW/m3 (100 MΩ) wave 0.033 Hz
    2 Ref. [76] contact-separation Cu+FEP 419 56.7 μA 4.1 mW (10 MΩ) wave 1.0 Hz
    3 Ref. [31] freestanding Al+FEP 1100 50 μA 5.2 mW/6.6 W/m3
    (20 MΩ)
    wave 1.75 Hz
    4 Ref. [79] contact-separation Cu+FEP 1004 (Vocpp) 110 μA 11.2 mW (6.28 MΩ) impulse excitation 9.3 g
    55.4 μW (60 MΩ) wave 2 Hz
    5 Ref. [80] contact-separation Cu+FEP 250 200 μA 8.5 mW/4.81 W/m3
    (1 MΩ)
    wave 1.0 Hz
    6 Ref. [32] freestanding water+PTFE/ZnO 16 10 μA droplet continuous
    7 Ref. [86] contact-separation Cu+PTFE 21.6 16 W (1 MΩ) droplet (6 mm) single
    8 Ref. [87] single-electrode water+PTFE 68.1 84.8 μA droplet (120 μL) single
    9 Ref. [88] contact-separation Cu+PTFE 42.2 95.4 A droplet 22 mL/s
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV

    表  3   混合式FEH-TENG能量俘获研究总结

    Table  3   Summary of hybrid FEH-TENG energy harvesting

    No.AuthorsModeMaterialOpen-circuit voltage/VShort-circuit currentPeak power/power density (resistance)Excitation typeExcitation value
    1 Ref. [93] TENG Al+PTEF 360 (Vocpp) 128 A (Iscpp) 1.67 mW (10 MΩ) wind 6 m/s
    PENG Cu+PVDF 65 (Vocpp) 135 A (Iscpp) 1.38 mW (330 KΩ)
    EMG magnet+copper coil 23.2 (Vocpp) 87 mA (Iscpp) 268.6 mW (180 Ω)
    2 Ref. [98] TENG nylon+FEP 683 (Vocpp) 1.8 mW/2.7 W/cm2 (60 MΩ) wind 12 m/s
    EMG magnet+copper coil 47.4 (Vocpp) 62 mW (660 Ω)
    3 Ref. [99] TENG water+FEP 5 droplet single
    TENG Al+PTEF 50 6 μA wind 13 m/s
    solar cell 4.2 27 μA solar 900
    4 Ref. [95] PENG Mo+AlN 1.5 (Vocpp) 9 mW/m2 (104 kΩ) droplet 3.33 mL/s
    TENG Ti/Au+parylene C
    5 Ref. [100] TENG water+sino-fluorine 2.6 μW/cm2 droplet 30 μL
    PENG (pyroelectricity) silver+PVDF+silver 27 temperature difference 40 ℃
    6 Ref. [101] TENG Al+PTFE 760 4 μA 55 mW/m2 (353 MΩ) wave 0.8 Hz
    EMG magnet+copper coil 2 10 mA
    注:VocppIscpp表示峰峰之间的最大开路电压和短路电流. 上标表示平均值.
    Note:Vocpp and Iscpp indicate the maximum open-circuit voltage and short-circuit current between peak to peak. The superscript indicates the average value.
    下载: 导出CSV
  • [1]

    Wang ZL, Wang AC. On the origin of contact-electrification. Materials Today, 2019, 30: 34-51 doi: 10.1016/j.mattod.2019.05.016

    [2]

    Wang ZL. From contact-electrification to triboelectric nanogenerators.Reports on Progress in Physics, 2021, 84(9): 096502

    [3]

    Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solidinterface. Chemical Reviews, 2021, in press, https://doi.org/10.1021/acs.chemrev.1c00176

    [4]

    Wang ZL. On the first principle theory of nanogenerators from maxwell's equations. Nano Energy, 2020, 68: 104272 doi: 10.1016/j.nanoen.2019.104272

    [5]

    Lai Z, Wang S, Zhu L, et al. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2021, 150: 107212 doi: 10.1016/j.ymssp.2020.107212

    [6]

    Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric pvdf films for energy harvesting from random vibration sources at low frequency. Sensors and Actuators A: Physical, 2016, 247: 547-554 doi: 10.1016/j.sna.2016.06.033

    [7]

    Mairizwan, AR, Satria DW. Optimization of harvesting solar cell energy based on mppt to be applied during the rainy seasonin the tropics. Journal of Physics: Conference Series, 2020, 1481: 012007 doi: 10.1088/1742-6596/1481/1/012007

    [8]

    Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368(6495): 1091-1098 doi: 10.1126/science.aaz5045

    [9]

    Zhang L, Dai H, Abdelkefi A, et al. Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Applied Energy, 2019, 254: 113737 doi: 10.1016/j.apenergy.2019.113737

    [10]

    Javed U, Abdelkefi A. Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dynamics, 2019, 95(4): 3309-3333 doi: 10.1007/s11071-018-04757-x

    [11]

    Lu Z, Wen Q, He X, et al. A flutter-based electromagnetic wind energy harvester: Theory and experiments. Applied Sciences, 2019, 9(22): 4823 doi: 10.3390/app9224823

    [12]

    Le HD, Kwon SD. An electromagnetic galloping energy harvester with double magnet design. Applied Physics Letters, 2019, 115(13): 133901 doi: 10.1063/1.5118271

    [13]

    Khan FU, Iqbal M. Electromagnetic bridge energy harvester utilizing bridge’s vibrations and ambient wind for wireless sensor node application. Journal of Sensors, 2018, 2018: 3849683

    [14] 王琼, 黄良沛, 周程峰等. 曲面驰振风能采集器动力学设计与性能研究. 振动工程学报, http://kns.cnki.net/kcms/detail/32.1349.TB.20210611.1101.004.html

    Wang Qiong, Huang Liangpei, Zhou Chengfeng, et al. Dynamic design and performance research of curved surface galloping wind energy harvester. Journal of Vibration Engineerin, https://kns.cnki.net /kcms/detail/32.1349.TB.20210611.1101.004.html (in Chinese))

    [15]

    Sun W, Seok J. Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity. Mechanical Systems and Signal Processing, 2021, 152: 107477 doi: 10.1016/j.ymssp.2020.107477

    [16]

    Su WJ, Lin WY. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester. International Journal of Mechanical Sciences, 2020, 173: 105457 doi: 10.1016/j.ijmecsci.2020.105457

    [17]

    Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034

    [18]

    Jia J, Shan X, Upadrashta D, et al. An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 2020, 198: 117287 doi: 10.1016/j.energy.2020.117287

    [19]

    Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A:Physical, 2017, 262: 123-129 doi: 10.1016/j.sna.2017.05.027

    [20]

    Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328-334 doi: 10.1016/j.nanoen.2012.01.004

    [21]

    Jiang Q, Chen B, Yang Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. Acs Applied Energy Materials, 2018, 1(8): 4269-4276 doi: 10.1021/acsaem.8b00902

    [22]

    Su Y, Xie G, Xie F, et al. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor. Chemical Physics Letters, 2016, 653: 96-100 doi: 10.1016/j.cplett.2016.04.080

    [23]

    Ren X, Fan H, Wang C, et al. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind. Smart Materials and Structures, 2018, 27(6): 065016 doi: 10.1088/1361-665X/aabe04

    [24]

    Ren X, Fan H, Wang C, et al. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy, 2018, 50: 562-570 doi: 10.1016/j.nanoen.2018.06.002

    [25]

    Park SJ, Lee SH, Seol ML, et al. Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55: 115-122 doi: 10.1016/j.nanoen.2018.10.063

    [26]

    Jiang Q, Chen B, Zhang K, et al. Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. Acs Applied Materials & Interfaces, 2017, 9(50): 43716-43723

    [27]

    Wang J, Tang L, Zhao L, et al. Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. International Journal of Energy Research, 2020, 44(6): 4516-4528 doi: 10.1002/er.5228

    [28]

    Wang J, Gu S, Zhang C, et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 2020, 213: 112835 doi: 10.1016/j.enconman.2020.112835

    [29] 练继建, 燕翔, 刘昉等. 流致振动发电的效率. 哈尔滨工程大学学报, 2017, 38(10): 1545-1553 (Lian Jijian, Yan Xiang, Liu Fang, et al. Power generating efficiency of flow-induced vibration. Journal of Harbin Engineering Universit, 2017, 38(10): 1545-1553 (in Chinese)
    [30]

    Hu J, Pu X, Yang H, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018-3023 doi: 10.1007/s12274-019-2545-y

    [31]

    Rui P, Zhang W, Zhong Y, et al. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy, 2020, 74: 104937 doi: 10.1016/j.nanoen.2020.104937

    [32]

    Lee JH, Kim S, Kim TY, et al. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579-584 doi: 10.1016/j.nanoen.2019.01.078

    [33]

    Liu W, Xu L, Liu G, et al. Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. Iscience, 2020, 23(12): 101848 doi: 10.1016/j.isci.2020.101848

    [34]

    Nam GH, Ahn JH, Lee GH, et al. A new pathway for liquid–solid triboelectric nanogenerator using streaming flow by a novel direct charge transfer. Advanced Energy and Sustainability Research, 2020, 1(1): 2000031 doi: 10.1002/aesr.202000031

    [35]

    Duan Y, Duan J, Zhao Y, et al. Self-powered low-platinum nanorod alloy monoelectrodes for rain energy harvest. Energy Technology, 2018, 6(9): 1606-1609 doi: 10.1002/ente.201700865

    [36]

    Wang S, Wang Y, Liu D, et al. A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing. Sensors and Actuators A: Physical, 2021, 317: 112459 doi: 10.1016/j.sna.2020.112459

    [37]

    Jiang T, Pang H, An J, et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064 doi: 10.1002/aenm.202000064

    [38]

    Helseth LE. A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode. Nano Energy, 2020, 73: 104809 doi: 10.1016/j.nanoen.2020.104809

    [39]

    Jiang D, Liu G, Li W, et al. A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Transactions on Power Electronics, 2020, 35(1): 25-32 doi: 10.1109/TPEL.2019.2921152

    [40]

    Zhou L, Liu D, Wang J, et al. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8(3): 481-506 doi: 10.1007/s40544-020-0390-3

    [41]

    Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 2018, 30(15): 1706790 doi: 10.1002/adma.201706790

    [42]

    Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano, 2019, 13(2): 2034-2041

    [43]

    Wang ZL. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001

    [44]

    Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discussions, 2015, 176: 447-458

    [45]

    Wang Y, Gao S, Xu W, et al. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Advanced Functional Materials, 2020, 30(26): 1908252 doi: 10.1002/adfm.201908252

    [46]

    Lei R, Zhai H, Nie J, et al. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514 doi: 10.1002/admt.201800514

    [47]

    Yang L, Wang Y, Guo Y, et al. Robust working mechanism of water droplet-driven triboelectric nanogenerator: Triboelectric output versus dynamic motion of water droplet. Advanced Materials Interfaces, 2019, 6(24): 1901547 doi: 10.1002/admi.201901547

    [48]

    Xia K, Du C, Zhu Z, et al. Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Applied Materials Today, 2018, 13: 190-197 doi: 10.1016/j.apmt.2018.09.005

    [49]

    Bi M, Wu Z, Wang S, et al. Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting. Nano Energy, 2020, 75: 104968 doi: 10.1016/j.nanoen.2020.104968

    [50]

    Lin Z, Zhang B, Guo H, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908 doi: 10.1016/j.nanoen.2019.103908

    [51]

    Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432-439 doi: 10.1016/j.nanoen.2018.12.054

    [52]

    Nie J, Wang Z, Ren Z, et al. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10: 2264 doi: 10.1038/s41467-019-10232-x

    [53]

    Rahman MT, Salauddin M, Park JY, et al. A natural wind-driven 3d-printed miniaturized and fully enclosed hybrid nanogenerator using flexible blade structure for subway tunnel applications//20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, 2019: 1443-1446

    [54]

    Lin H, He M, Jing Q, et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 2019, 56: 269-276 doi: 10.1016/j.nanoen.2018.11.037

    [55]

    Zhang Y, Zeng Q, Wu Y, et al. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Letters, 2020, 12(1): 175 doi: 10.1007/s40820-020-00513-2

    [56]

    Gao Q, Li Y, Xie Z, et al. Robust triboelectric nanogenerator with ratchet-like wheel-based design for harvesting of environmental energy. Advanced Materials Technologies, 2020, 5(1): 1900801 doi: 10.1002/admt.201900801

    [57]

    Wang Y, Yu X, Yin M, et al. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy, 2021, 82: 105740 doi: 10.1016/j.nanoen.2020.105740

    [58]

    Liu Y, Liu J, Che L. A high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (tengs). Sensors (Basel, Switzerland) , 2021, 21(9): 2951 doi: 10.3390/s21092951

    [59]

    Lee JS, Yong H, Choi YI, et al. Stackable disk-shaped triboelectric nanogenerator to generate energy from omnidirectional wind. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, in press, https://doi.org/10.1007/s40684-021-00340-9

    [60]

    Zaw NYW, Roh H, Kim I, et al. Omnidirectional triboelectric nanogenerator operated by weak wind towards a self-powered anemoscope. Micromachines, 2020, 11(4): 414 doi: 10.3390/mi11040414

    [61]

    Ren Z, Wang Z, Liu Z, et al. Energy harvesting from breeze wind (0.7-6 m s(−1)) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10 (36): 2001770

    [62]

    Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902

    [63] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253 (Duan Songchang, Zhao Xizeng, Ye Zhouteng, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese)
    [64]

    Zeng Q, Wu Y, Tang Q, et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 2020, 70: 104524 doi: 10.1016/j.nanoen.2020.104524

    [65]

    Ren Z, Wang Z, Wang F, et al. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mechanics Letters, 2021, 45: 101285 doi: 10.1016/j.eml.2021.101285

    [66]

    Bashir M, Rajendran P, Khan SA. Energy harvesting from aerodynamic instabilities: Current prospect and future trends. IOP Conference Series: Materials Science and Engineering, 2018, 290: 012054 doi: 10.1088/1757-899X/290/1/012054

    [67]

    Wang Q, Zou HX, Zhao LC, et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 2020, 117(4): 043902 doi: 10.1063/5.0014484

    [68]

    Wen Q, He X, Lu Z, et al. A comprehensive review of miniatured wind energy harvesters. Nano Materials Science, 2021, 3(2): 170-185 doi: 10.1016/j.nanoms.2021.04.001

    [69]

    Zhao Z, Pu X, Du C, et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. Acs Nano, 2016, 10(2): 1780-1787 doi: 10.1021/acsnano.5b07157

    [70]

    Wang Y, Yang E, Chen T, et al. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 2020, 78: 105279 doi: 10.1016/j.nanoen.2020.105279

    [71] 夏杨, 彭争春, 张岚斌等. 一种采集风能的多层薄膜颤振混合纳米发电机. 微纳电子技术, 2020, 57(2): 136-141+168 (Xia Yang, Peng Zhengchun, Zhang Lanbin, et al. A multilayer film flutter hybrid nanogenerator for harvesting the wind energy. Micronanoelectronic Technology, 2020, 57(2): 136-141+168 (in Chinese)
    [72]

    Trung KP, Wang S, Wang Y, et al. A self-powered and low pressure loss gas flowmeter based on fluid-elastic flutter driven triboelectric nanogenerator. Sensors, 2020, 20(3): 729 doi: 10.3390/s20030729

    [73]

    Wijewardhana KR, Shen TZ, Jayaweera EN, et al. Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier. Nano Energy, 2018, 52: 402-407 doi: 10.1016/j.nanoen.2018.08.016

    [74] 杨恩, 王岩, 王建业等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究. 中国科学:技术科学, 2021: 1-15 (Yang En, Wang Yan, Wang Jianye, et al. Research on a film-flapping triboelectric nanogenerator for wind energy harvesting. Scientia Sinica Technologica, 2021: 1-15 (in Chinese)
    [75]

    Zhang L, Meng B, Xia Y, et al. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 2020, 70: 104477 doi: 10.1016/j.nanoen.2020.104477

    [76]

    Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: Structure, mechanism, and applications. Acs Nano, 2021, 15(1): 258-287 doi: 10.1021/acsnano.0c09803

    [77]

    Liang X, Liu Z, Feng Y, et al. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. nano Energy, 2021, 83: 105836 doi: 10.1016/j.nanoen.2021.105836

    [78]

    Liu L, Yang X, Zhao L, et al. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412-9421 doi: 10.1021/acsnano.1c00345

    [79]

    Lin ZH, Cheng G, Lin L, et al. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angewandte Chemie International Edition, 2013, 52(48): 12545-12549 doi: 10.1002/anie.201307249

    [80]

    Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197 doi: 10.1016/j.nanoen.2019.104197

    [81]

    Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy & Environmental Science, 2020, 13(1): 277-285

    [82]

    Zhang C, Liu L, Zhou L, et al. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. Acs Nano, 2020, 14(6): 7092-7100 doi: 10.1021/acsnano.0c01827

    [83]

    Wu Y, Zeng Q, Tang Q, et al. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205 doi: 10.1016/j.nanoen.2019.104205

    [84]

    Feng Y, Jiang T, Liang X, et al. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7(2): 021401 doi: 10.1063/1.5135734

    [85]

    Zhong W, Xu L, Zhan F, et al. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. Acs Nano, 2020, 14(8): 10510-10517 doi: 10.1021/acsnano.0c04413

    [86]

    Nie S, Guo H, Lu Y, et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000454

    [87]

    Zhang N, Gu H, Lu K, et al. A universal single electrode droplet-based electricity generator (SE-deg) for water kinetic energy harvesting. Nano Energy, 2021, 82: 105735 doi: 10.1016/j.nanoen.2020.105735

    [88]

    Liu X, Yu A, Qin A, et al. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Advanced Materials Technologies, 2019, 4(11): 1900608 doi: 10.1002/admt.201900608

    [89]

    Yang L, Wang Y, Zhao Z, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. Acs Applied Materials & Interfaces, 2020, 12(34): 38192-38201

    [90]

    Chen CY, Tsai CY, Xu MH, et al. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polymer Letters, 2019, 13(6): 533-542 doi: 10.3144/expresspolymlett.2019.45

    [91]

    Chandrasekhar A, Vivekananthan V, Kim SJ. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy, 2020, 69: 104439 doi: 10.1016/j.nanoen.2019.104439

    [92]

    Fan X, He J, Mu J, et al. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy, 2020, 68: 104319 doi: 10.1016/j.nanoen.2019.104319

    [93]

    Rahman MT, Salauddin M, Maharjan P, et al. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256-268 doi: 10.1016/j.nanoen.2018.12.052

    [94]

    Jurado UT, Pu SH, White NM. Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy, 2020, 72: 104701 doi: 10.1016/j.nanoen.2020.104701

    [95]

    Mariello M, Fachechi L, Guido F, et al. Multifunctional sub-100 & micro;m thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible aln and soft parylene c-pdms-ecoflex(tm). Nano Energy, 2021, 83: 105811 doi: 10.1016/j.nanoen.2021.105811

    [96]

    Zhao C, Zhang Q, Zhang W, et al. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57: 440-449 doi: 10.1016/j.nanoen.2018.12.062

    [97]

    Kim WJ, Vivekananthan V, Khandelwal G, et al. Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. Acs Applied Electronic Materials, 2020, 2(10): 3100-3108 doi: 10.1021/acsaelm.0c00302

    [98]

    Fang Y, Tang T, Li Y, et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor iot applications. iScience, 2021, 24(4): 102300 doi: 10.1016/j.isci.2021.102300

    [99]

    Roh H, Kim I, Kim D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy, 2020, 70: 104515 doi: 10.1016/j.nanoen.2020.104515

    [100]

    Jiang D, Su Y, Wang K, et al. A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70: 104459 doi: 10.1016/j.nanoen.2020.104459

    [101]

    Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578(7795): 392 doi: 10.1038/s41586-020-1985-6

    [102]

    Zhang Q, Liang Q, Nandakumar DK, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616 doi: 10.1038/s41467-021-20919-9

    [103]

    Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x

    [104]

    Diaz A, Felix-Navarro R. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 2004, 62(4): 277-290 doi: 10.1016/j.elstat.2004.05.005

    [105]

    Lee JW, Ye BU, Baik JM. Research update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator. APL Materials, 2017, 5(7): 073802 doi: 10.1063/1.4979306

    [106]

    Nafari A, Sodano HA. Surface morphology effects in a vibration based triboelectric energy harvester. Smart Materials and Structures, 2018, 27(1): 015029 doi: 10.1088/1361-665X/aa9ccb

    [107]

    Lee JW, Hwang W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy, 2018, 52: 315-322 doi: 10.1016/j.nanoen.2018.08.008

    [108]

    Zhou Q, Kim JN, Han KW, et al. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-mesh hybrid electrode. Nano Energy, 2019, 59: 120-128 doi: 10.1016/j.nanoen.2019.02.022

    [109]

    Lai YC, Hsiao YC, Wu HM, et al. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Advanced Science, 2019, 6(5): 1801883 doi: 10.1002/advs.201801883

    [110] 耿魁伟, 徐志平, 李徐. 基于MoS2/Graphene复合材料的摩擦纳米发电机. 华南理工大学学报(自然科学版), 2020, 48(10): 113-119+128 (Geng Kuiwei, Xu Zhiping, Li Xu. Triboelectric nanogenerator based on MoS2/graphene composite. Journal of South China University of Technology (Natural Science Edition), 2020, 48(10): 113-119+128 (in Chinese)
    [111]

    Ye Q, Wu Y, Qi Y, et al. Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy, 2019, 61: 381-388 doi: 10.1016/j.nanoen.2019.04.075

    [112]

    Wang L, Yang X, Daoud WA. High power-output mechanical energy harvester based on flexible and transparent au nanoparticle-embedded polymer matrix. Nano Energy, 2019, 55: 433-440 doi: 10.1016/j.nanoen.2018.10.030

    [113]

    Nie J, Ren Z, Xu L, et al. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Advanced Materials, 2020, 32(2): 1905696 doi: 10.1002/adma.201905696

    [114]

    Cheng X, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096

    [115]

    Sun W, Wang N, Li J, et al. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochimica Acta, 2021, 391: 138994 doi: 10.1016/j.electacta.2021.138994

    [116]

    Xiong J, Luo H, Gao D, et al. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61: 584-593 doi: 10.1016/j.nanoen.2019.04.089

    [117]

    Cui X, Zhang H, Cao S, et al. Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure. Nano Energy, 2018, 52: 71-77 doi: 10.1016/j.nanoen.2018.07.037

    [118]

    Han Q, Ding Z, Sun W, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection. Sustainable Energy Technologies and Assessments, 2020, 39: 100717 doi: 10.1016/j.seta.2020.100717

    [119]

    Xu S, Feng Y, Liu Y, et al. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy, 2021, 85: 106023 doi: 10.1016/j.nanoen.2021.106023

    [120]

    Hu S, Shi Z, Zheng R, et al. Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. Acs Applied Materials & Interfaces, 2020, 12(36): 40021-40030

    [121]

    Chen P, An J, Shu S, et al. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066 doi: 10.1002/aenm.202003066

    [122]

    Liu L, Shi Q, Lee C. A novel hybridized blue energy harvester aiming at all-weather iot applications. Nano Energy, 2020, 76: 105052 doi: 10.1016/j.nanoen.2020.105052

  • 期刊类型引用(14)

    1. 张旭,朱雨润,李正郁,倪问池,马勇. 带电颗粒阻尼器运动过程与能量收集理论. 微纳电子技术. 2025(02): 7-17 . 百度学术
    2. 章亚栋. 基于摩擦纳米发电机的俘获风致振动能量分析. 集成电路应用. 2024(02): 406-408 . 百度学术
    3. 韩鹏,黄桥高,秦登辉,潘光. 基于尾流降阶模型的涡激振动俘能效率优化研究. 清华大学学报(自然科学版). 2024(08): 1391-1400 . 百度学术
    4. 谭栋国,池实民,欧旭,周加喜,王凯. 非线性摩擦纳米发电俘能技术的若干进展. 力学学报. 2024(09): 2495-2510 . 本站查看
    5. 马腾浩,王松,韩勤锴,褚福磊. 面向接触分离式摩擦发电机的机电耦合研究. 动力学与控制学报. 2024(09): 62-71 . 百度学术
    6. HU DongXu,QIAN Shuo,HOU XiaoJuan,DUAN ZhiGang,NIU LiXin,WU Hui,LIU JianJun,ZHANG Jie,GENG WenPing,MU JiLiang,HE Jian,CHOU XiuJian. A high-performance hybrid wind energy harvester based on a bidirectional acceleration structure. Science China(Technological Sciences). 2024(12): 3766-3776 . 必应学术
    7. 张野,王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报. 2023(10): 2199-2216 . 本站查看
    8. 赵林川,陈泽文,邹鸿翔,孟光,张文明. 机械能量采集动力学调控方法. 力学学报. 2023(10): 2094-2114 . 本站查看
    9. 韩勤锴,高帅,邵卿洋,褚福磊. 摆式摩擦发电机非线性机电耦合建模研究. 力学学报. 2023(10): 2178-2188 . 本站查看
    10. 邹鸿翔,苏昌胜,赵林川,张文明,魏克湘. 波浪能量采集及自供能海洋无人机电系统研究进展. 力学学报. 2023(10): 2115-2131 . 本站查看
    11. 邹密,宋旻彦,李微. 应用COMSOL和MATLAB的风能收集型摩擦纳米发电机仿真教学. 实验室研究与探索. 2023(10): 26-29+116 . 百度学术
    12. 周陇,唐毓婧,贾轶静,李晓敏,邓莹楠. 摩擦纳米发电机性能的优化策略及应用研究进展. 石油化工. 2023(12): 1784-1790 . 百度学术
    13. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    14. 徐鹏,刘建华,谢广明,徐敏义. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究. 兵工自动化. 2022(12): 20-24 . 百度学术

    其他类型引用(31)

图(13)  /  表(3)
计量
  • 文章访问数:  2872
  • HTML全文浏览量:  822
  • PDF下载量:  688
  • 被引次数: 45
出版历程
  • 收稿日期:  2021-08-20
  • 录用日期:  2021-10-08
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2021-11-17

目录

/

返回文章
返回