EI、Scopus 收录
中文核心期刊

致密砂岩逆向渗吸作用距离实验研究

EXPERIMENTAL RESEARCH ON QUANTIFICATION OF COUNTERCURRENT IMBIBITION DISTANCE FOR TIGHT SANDSTONE

  • 摘要: 中国致密油储量丰富, 但多数致密储层波及效率低, 衰竭开发效果较差. 逆向渗吸是致密油藏注水开发过程中的一种重要的提高采收率途径, 目前许多学者主要针对致密油藏渗吸采收率及其影响因素开展研究, 而对于渗吸作用距离(表征致密油藏渗吸作用范围)研究较少. 本文采用CT在线扫描装置建立了致密岩心逆向渗吸作用距离量化方法, 明确了逆向渗吸的作用范围, 进一步研究了流体压力、含水饱和度、岩心渗透率和表面活性剂对逆向渗吸作用距离的影响, 阐明了逆向渗吸作用距离与渗吸采收率的关系, 为提高致密油藏采收率提供指导. 研究结果表明, 渗透率为0.3 mD的致密岩心逆向渗吸作用距离尺度仅为1.25 ~ 1.625 cm; 5 MPa条件下渗透率为0.302 mD的岩心逆向渗吸作用距离为1.375 cm. 在本实验条件下, 流体压力和初始含水饱和度对致密岩心逆向渗吸作用距离的影响较小, 而渗透率和表面活性剂对致密岩心逆向渗吸作用距离的影响显著, 渗透率为0.784 mD的岩心逆向渗吸作用距离相较于渗透率为0.302 mD的岩心提高2.63倍. 逆向渗吸作用距离是渗吸采收率表征的重要参数, 决定了逆向渗吸作用的波及范围.

     

    Abstract: China has an unbelievable number of tight oil reserves in storage, but a large majority of the tight oil reservoirs are in low sweep efficiency and in poor depletion development. Countercurrent imbibition is an important recovery mechanism for enhancing oil recovery during water injection development of tight oil reservoirs. At present, a large number of scholars have mainly conducted research on the imbibition recovery of tight oil reservoirs as well as the factors that may have influences on that, but actually there are few research on the imbibition distance that characterizes the range of imbibition effect in tight oil reservoirs. In this paper, the CT online scanning device is employed to establish a quantification method for countercurrent imbibition distance (CID) of tight cores, determining the range of countercurrent imbibition, and it also can make a further study on the influence of fluid pressure, water saturation, core permeability and surfactant on CID. In addition, it can be utilized to determine the relationship between CID and imbibition recovery. As a result, this study also provides theoretical guidance for enhancing oil recovery of tight oil reservoirs. The research results show that the CID scale of tight core with the permeability of about 0.3 mD is only 1.25 ~ 1.625 cm, and CID of the tight core with 0.302 mD under the condition of 5 MPa is 1.375 cm. Under the experimental conditions in this article, fluid pressure and initial water saturation have little effect on the CID of tight cores, while permeability and surfactant have significant effect on the CID of tight cores. What’s more, the CID of the core with 0.784 mD is 2.63 times higher than that of the core with 0.302 mD. In conclusion, the CID is a crucial parameter for the characterization of imbibition recovery, and it determines the range of countercurrent imbibition.

     

/

返回文章
返回