EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

软材料粘接结构界面破坏研究综述

朱忠猛 杨卓然 蒋晗

朱忠猛, 杨卓然, 蒋晗. 软材料粘接结构界面破坏研究综述. 力学学报, 2021, 53(7): 1807-1828 doi: 10.6052/0459-1879-21-131
引用本文: 朱忠猛, 杨卓然, 蒋晗. 软材料粘接结构界面破坏研究综述. 力学学报, 2021, 53(7): 1807-1828 doi: 10.6052/0459-1879-21-131
Zhu Zhongmeng, Yang Zhuoran, Jiang Han. Review of interfacial debonding behavior of adhesive structures with soft materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1807-1828 doi: 10.6052/0459-1879-21-131
Citation: Zhu Zhongmeng, Yang Zhuoran, Jiang Han. Review of interfacial debonding behavior of adhesive structures with soft materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1807-1828 doi: 10.6052/0459-1879-21-131

软材料粘接结构界面破坏研究综述

doi: 10.6052/0459-1879-21-131
基金项目: 国家自然科学基金(11872322), 四川省应用基础研究重点项目(2019YJ0231)和西南交通大学博士生创新基金(D-CX201835)资助项目
详细信息
    作者简介:

    蒋晗, 教授, 主要研究方向: 高分子材料力学性能, 表面破坏与损伤. E-mail: jianghan@swjtu.edu.cn

  • 中图分类号: O346.1

REVIEW OF INTERFACIAL DEBONDING BEHAVIOR OF ADHESIVE STRUCTURES WITH SOFT MATERIALS

  • 摘要: 软材料已经在软机器人、生物医学及柔性电子等各个领域得到广泛的应用. 实际应用中, 软材料多需要粘附于不同类型的基底上, 与之共同组成工程构件进而实现特定的功能, 粘接界面性能对构件的结构完整性与功能可靠性起着关键性作用. 本文对目前软材料粘接结构界面破坏行为方面的研究进行了系统总结. 首先通过与传统粘接结构的对比, 指出了“软界面”与“软基体”两种软材料粘接结构界面破坏行为的独特性及其物理本质. 接着分别总结了“软界面”与“软基体”两种粘接结构界面破坏行为的实验表征方面的研究成果, 对界面及基体黏弹性耗散对界面破坏机理的影响分别进行了分析. 然后从理论角度, 介绍了针对两种软材料粘接结构界面破坏行为的理论分析方法, 并对已建立的相关理论模型进行了总结. 之后以内聚力模型方法为基础, 介绍了软材料粘接结构界面破坏行为数值模拟方面的相关研究进展. 最后基于已有的研究成果, 提出了目前研究所面临的挑战, 并对可能的软材料粘接结构界面破坏的未来研究方向进行了讨论和展望.

     

  • 图  1  不同粘接结构剥离过程示意图

    Figure  1.  Schematic diagram of peeling of different adhesive structures

    图  2  剥离示意图与典型力−位移曲线

    Figure  2.  Schematic diagram of peeling and typical force-displacement curve

    图  3  拉拔测试示意图及典型名义应力−名义应变曲线[5]

    Figure  3.  Schematic diagram of probe-tack and typical nominal stress-strain curve[5]

    图  4  拉拔测试典型名义应力−应变曲线及界面破坏机理[5]

    Figure  4.  Typical nominal stress-strain curve of probe-tack test and interfacial debonding mechanism[5]

    图  5  “软基体”粘接结构界面0°剥离过程中的能量耗散分布和裂尖附近局部耗散与基体能量耗散的分离[51]

    Figure  5.  Distribution of the energy dissipation during zero degree peeling and separation of the energy dissipated near the crack front and in the bulk elastomer[51]

    图  6  Kaelble模型界面法向与剪切应力分布[26-28]

    Figure  6.  Normal and shear stress distributions in Kaelble’s model[26-28]

    图  7  黏−超弹性被粘物基体在刚性基底上的0°剥离[55]

    Figure  7.  Zero degree peeling of a visco-hyperelastic tape on a rigid substrate[55]

    图  8  表观界面粘接能Г与界面本征断裂能Г0以及水凝胶基体内部的能量耗散ГD的关系[96]

    Figure  8.  Relation among the apparent adhesion energy Г, the interfacial intrinsic fracture energy Г0 and bulk energy dissipation ГD in hydrogel[96]

    图  9  经典内聚力本构形式[117]

    Figure  9.  Classic cohesive zone models[117]

    图  10  黏弹性内聚力模型对不同加载率下的粘接界面破坏的描述

    Figure  10.  Description of interfacial debonding behavior under various loading rates using different viscoelastic CZM models

    图  11  0°剥离中超弹性黏合剂/基底间应力分布[137]

    Figure  11.  Stress along the hyperelastic adhesive/substrate interface during 0° peeling[137]

    表  1  剥离模型总结(恒定界面粘接能)

    Table  1.   Summary of the peeling models (constant adhesion energy)

    Adhesive structureTheoretical modelFeatureReference
    linear elastic adherend/
    rigid substrate
    ${\left( {\dfrac{F}{w}} \right)^2}\dfrac{1}{{2Et}} + {\dfrac{F}{w}}(1 - \cos \theta ) - \gamma = 0$Considering bending and
    extension of the adherend
    [87]
    $\dfrac{F}{w} = \sqrt {2Et\gamma } $Steady-state
    0° peeling
    [88]
    $F = \sqrt {{\gamma _{\rm{s}}}} \sqrt {\dfrac{A}{C}} $Catastrophic
    0° peeling
    [84-85]
    $F = \sqrt {{\gamma _{\rm{s}}}} \sqrt {\dfrac{{\partial A}}{{\partial C}}} $Steady-state and catastrophic
    0° peeling
    [89]
    linear elastic adherend/
    linear elastic substrate
    $\dfrac{F}{w} = \sqrt {2\gamma \dfrac{{{E_2}{t_2}}}{{{E_1}{t_1}}}({E_1}{t_1} + {E_2}{t_2})} $Steady-state
    0° peeling
    [87]
    hyperelastic adherend/
    rigid substrate
    $ {\dfrac{F}{w}} (\lambda - \cos \theta ) - U\left( \lambda \right) - \gamma = 0$Considering bending and
    extension of hyperelastic beam
    [93]
    viscoelastic adherend/
    rigid substrate
    $G = {G_0}\left[ {1 + {{\left( {\dfrac{v}{{{v_0}}}} \right)}^n}} \right]$Phenomenological description[100]
    $G = {\dfrac{F}{w}} \left( {1 - \cos \theta + {g_{\rm{b}}} + \dfrac{F}{{{E_0}A}}{g_{\rm{m}}}} \right)$gb, gm related to the viscoelastic
    property of the adherend
    [37]
    $\dfrac{F}{w} = \sqrt {2{E_\infty }t\gamma } \sqrt {1 + \left( {\dfrac{{{E_0}}}{{{E_\infty }}} - 1} \right)\exp \left( { - \dfrac{t}{\tau }} \right)} $Steady-state
    0° peeling
    [55]
    visco-hyperelastic adherend/
    rigid substrate
    $\dfrac{F}{w} = {\mu ^ * }t\left( { {\lambda _{\rm{c} } } - {\lambda _{\rm{c} } }^{ - 2} } \right)$Steady-state
    0° peeling
    [55]
    linear elastic adherend/
    viscoelastic substrate
    $\hat F(1 - \cos \theta ) + \left[ {\dfrac{1}{2} - \dfrac{E}{{{E_0}}}{f_{\rm{v}}}\left( {\hat V} \right)} \right]{\hat F^2} - \hat \gamma = 0$fv related to the visco-hyperelastic
    property of the substrate
    [98]
    elastomeric adherend/
    elastomeric substrate
    $G = {U_{\rm{b}}}\left( {\lambda ''} \right) - {U_{\rm{s}}}\left( {\lambda '} \right) + \dfrac{F}{w}\left( {\lambda ' - \lambda ''} \right)$Ub, Us determined through experiment[101]
    下载: 导出CSV
  • [1] Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838-843 doi: 10.1126/science.1206157
    [2] Ilievski F, Mazzeo AD, Shepherd RF, et al. Soft robotics for chemists. Angewandte Chemie, 2011, 50(8): 1890-1895 doi: 10.1002/anie.201006464
    [3] Minev IR, Musienko P, Hirsch A, et al. Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347(6218): 159-163 doi: 10.1126/science.1260318
    [4] Lu G, Ding Z, Wei Y, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds. ACS Applied Materials & Interfaces, 2018, 10(51): 44314-44323
    [5] Creton C, Ciccotti M. Fracture and adhesion of soft materials: a review. Reports on Progress in Physics, 2016, 79(4): 046601 doi: 10.1088/0034-4885/79/4/046601
    [6] Wahab MMA. Fatigue in adhesively bonded joints: a review. International Scholarly Research Notices, 2012, 2012: 1-25 doi: 10.1093/imrn/rnr003
    [7] 许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征. 中国科学: 技术科学, 2012, 42(12): 1361-1376 (Xu Wei, Chen Li, Zhang Qiancheng, et al. Mechanical behavior of the adhesvie interface and its characterization. Scientia Sinica Technologica, 2012, 42(12): 1361-1376 (in Chinese) doi: 10.1360/092012-752
    [8] 陈少华, 彭志龙, 姚寅, 等. 表面黏附及表面输运的最新研究进展. 固体力学学报, 2016, 37(4): 291-311 (Chen Shaohua, Peng Zhilong, Yao Yin, et al. The latest research progress in surface adhesion and transportation. Chinese Journal of Solid Mechanics, 2016, 37(4): 291-311 (in Chinese)
    [9] Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A, 1921, 221(582-593): 163-198
    [10] Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 300-319
    [11] Fuller KNG, Tabor D. The effect of surface roughness on the adhesion of elastic solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1975, 345(1642): 327-342
    [12] Persson B, Bucher F, Chiaia B. Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 2002, 65(18): 184106 doi: 10.1103/PhysRevB.65.184106
    [13] Dahlquist CA. Pressure-sensitive adhesives. Treatise on Adhesion and Adhesives, 1969, 2: 219-260
    [14] Lin Y, Hui C. Cavity growth from crack-like defects in soft materials. International Journal of Fracture, 2004, 126(3): 205-221 doi: 10.1023/B:FRAC.0000026510.60747.3a
    [15] Shull KR, Creton C. Deformation behavior of thin, compliant layers under tensile loading conditions. Journal of Polymer Science Part B, 2004, 42(22): 4023-4043 doi: 10.1002/polb.20258
    [16] Shull KR. Fracture and adhesion of elastomers and gels: Large strains at small length scales. Journal of Polymer Science Part B, 2006, 44(24): 3436-3439 doi: 10.1002/polb.21005
    [17] Chen H, Feng X, Huang Y, et al. Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1737-1752 doi: 10.1016/j.jmps.2013.04.001
    [18] Peng Z, Chen S. Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate. Physical Review E, 2015, 91(4): 042401 doi: 10.1103/PhysRevE.91.042401
    [19] Peng Z, Wang C, Chen L, et al. Peeling behavior of a viscoelastic thin-film on a rigid substrate. International Journal of Solids and Structures, 2014, 51(25-26): 4596-4603 doi: 10.1016/j.ijsolstr.2014.10.011
    [20] Kaelble DH. Theory and analysis of peel adhesion: Rate-temperature dependence of viscoelastic interlayers. Journal of Colloid Science, 1964, 19(5): 413-424 doi: 10.1016/0095-8522(64)90041-8
    [21] Gent AN, Petrich RP. Adhesion of viscoelastic materials to rigid substrates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1969, 310(1502): 433-448
    [22] Derail C, Allal A, Marin G, et al. Relationship between viscoelastic and peeling properties of model adhesives. Part 1. cohesive fracture. Journal of Adhesion, 1997, 61(1-4): 123-157 doi: 10.1080/00218469708010519
    [23] Derail C, Allal A, Marin G, et al. Relationship between viscoelastic and peeling properties of model adhesives. Part 2. the interfacial fracture domains. Journal of Adhesion, 1998, 68(3-4): 203-228 doi: 10.1080/00218469808029255
    [24] Yarusso DJ. Quantifying the relationship between peel and rheology for pressure sensitive adhesives. Journal of Adhesion, 1999, 70(3-4): 299-320 doi: 10.1080/00218469908009561
    [25] Gardon JL. Peel adhesion. I. some phenomenological aspects of the test. Journal of Applied Polymer Science, 1963, 7(2): 625-641 doi: 10.1002/app.1963.070070219
    [26] Gardon JL. Peel adhesion. II. a theoretical analysis. Journal of Applied Polymer Science, 1963, 7(2): 643-665 doi: 10.1002/app.1963.070070220
    [27] Kaelble DH. Theory and analysis of peel adhesion: adhesive thickness effects. Journal of Adhesion, 1992, 37(1-3): 205-214 doi: 10.1080/00218469208031262
    [28] Kaelble DH. Theory and analysis of peel adhesion: bond stresses and distributions. Transactions of the Society of Rheology, 1960, 4(1): 45-73 doi: 10.1122/1.548868
    [29] Gent AN, Kaang SY. Effect of peel angle upon peel force. Journal of Adhesion, 1987, 24(2-4): 173-181 doi: 10.1080/00218468708075425
    [30] Williams JG. Root rotation and plastic work effects in the peel test. Journal of Adhesion, 1993, 41(1-4): 225-239 doi: 10.1080/00218469308026564
    [31] Williams JA, Kauzlarich JJ. The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load-extension characteristics. Tribology International, 2005, 38(11): 951-958
    [32] Maugis D, Barquins M. Stick-slip and Peeling of Adhesive Tapes. Adhesion 12. New York: Springer. 1988: 205-222
    [33] Ciccotti M, Giorgini B, Vallet D, et al. Complex dynamics in the peeling of an adhesive tape. International Journal of Adhesion and Adhesives, 2004, 24(2): 143-151 doi: 10.1016/j.ijadhadh.2003.09.001
    [34] Villey R, Creton C, Cortet P, et al. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter, 2015, 11(17): 3480-3491 doi: 10.1039/C5SM00260E
    [35] Lakrout H, Sergot P, Creton C. Direct observation of cavitation and fibrillation in a probe tack experiment on model acrylic pressure-sensitive-adhesives. Journal of Adhesion, 1999, 69(3-4): 307-359 doi: 10.1080/00218469908017233
    [36] Creton C, Hooker JC, Shull KR. Bulk and interfacial contributions to the debonding mechanisms of soft adhesives: extension to large strains. Langmuir, 2001, 17(16): 4948-4954 doi: 10.1021/la010117g
    [37] Deplace F, Carelli C, Mariot S, et al. Fine tuning the adhesive properties of a soft nanostructured adhesive with rheological measurements. Journal of Adhesion, 2009, 85(1): 18-54 doi: 10.1080/00218460902727381
    [38] Zosel A. The effect of fibrilation on the tack of pressure sensitive adhesives. International Journal of Adhesion and Adhesives, 1998, 18(4): 265-271 doi: 10.1016/S0143-7496(98)80060-2
    [39] Gay C, Leibler L. Theory of tackiness. Physical Review Letters, 1999, 82(5): 936-939 doi: 10.1103/PhysRevLett.82.936
    [40] Chikina I. Cavitation in Adhesives. Physical Review Letters, 2000, 85(21): 4546-4549 doi: 10.1103/PhysRevLett.85.4546
    [41] Gay C. Stickiness-some fundamentals of adhesion. Integrative and Comparative Biology, 2002, 42(6): 1123-1126 doi: 10.1093/icb/42.6.1123
    [42] Brown KR, Creton C. Nucleation and growth of cavities in soft viscoelastic layers under tensile stress. European Physical Journal E, 2002, 9(1): 35-40 doi: 10.1140/epje/i2002-10050-0
    [43] Creton C, Hu G, Deplace F, et al. Large-strain mechanical behavior of model block copolymer adhesives. Macromolecules, 2009, 42(20): 7605-7615 doi: 10.1021/ma900821k
    [44] Maugis D, Barquins M. Fracture mechanics and the adherence of viscoelastic bodies. Journal of Physics D, 1978, 11(14): 1989-2023 doi: 10.1088/0022-3727/11/14/011
    [45] Tanguy F, Nicoli M, Lindner A, et al. Quantitative analysis of the debonding structure of soft adhesives. European Physical Journal E, 2014, 37(1): 1-12 doi: 10.1140/epje/i2014-14001-x
    [46] Pandey V, Fleury A, Villey R, et al. Linking peel and tack performances of pressure sensitive adhesives. Soft Matter, 2020, 16(13): 3267-3275 doi: 10.1039/C9SM02172H
    [47] Wang Y, Nian G, Yang X, et al. Lap shear of a soft and elastic adhesive. Mechanics of Materials, 2021, 158: 103845 doi: 10.1016/j.mechmat.2021.103845
    [48] Wang YC, Yang XX, Nian GD, et al. Strength and toughness of adhesion of soft materials measured in lap shear. Journal of the Mechanics and Physics of Solids, 2020, 143(2020): 103988
    [49] Wang Y, Yin T, Suo Z. Polyacrylamide hydrogels. III. Lap shear and peel. Journal of the Mechanics and Physics of Solids, 2021, 150: 104348 doi: 10.1016/j.jmps.2021.104348
    [50] Villey R, Cortet PP, Creton C, et al. In-situ measurement of the large strain response of the fibrillar debonding region during the steady peeling of pressure sensitive adhesives. International Journal of Fracture, 2017, 204(2): 175-190 doi: 10.1007/s10704-016-0171-1
    [51] Elzière P, Dalle-Ferrier C, Creton C, et al. Large strain viscoelastic dissipation during interfacial rupture in laminated glass. Soft Matter, 2017, 13(8): 1624-1633 doi: 10.1039/C6SM02785G
    [52] Newby BZ, Chaudhury MK. Effect of interfacial slippage on viscoelastic adhesion. Langmuir, 1997, 13(6): 1805-1809 doi: 10.1021/la960962c
    [53] Amouroux N, Petit J, Léger L, et al. Role of interfacial resistance to shear stress on adhesive peel strength. Langmuir, 2001, 17(21): 6510-6517 doi: 10.1021/la010146r
    [54] Ponce S, Bico J, Roman B. Effect of friction on the peeling test at zero-degrees. Soft Matter, 2015, 11(48): 9281-9290 doi: 10.1039/C5SM01203A
    [55] Zhu Z, Xia Y, Jiang C, et al. Investigation of zero-degree peeling behavior of visco-hyperelastic highly stretchable adhesive tape on rigid substrate. Engineering Fracture Mechanics, 2020, 241: 107368
    [56] Zhu Z, Xia Y, Li J, et al. Rate dependent shear debonding between a highly stretchable elastomer and a rigid substrate: Delayed debonding and pre-stretch effect. Engineering Fracture Mechanics, 2019, 222: 106743 doi: 10.1016/j.engfracmech.2019.106743
    [57] Chivers RA. Easy removal of pressure sensitive adhesives for skin applications. International Journal of Adhesion and Adhesives, 2001, 21(5): 381-388 doi: 10.1016/S0143-7496(01)00015-X
    [58] Karwoski A, Plaut R. Experiments on peeling adhesive tapes from human forearms. Skin Research and Technology, 2004, 10(4): 271-277 doi: 10.1111/j.1600-0846.2004.00082.x
    [59] Plaut RH. Two-dimensional analysis of peeling adhesive tape from human skin. The Journal of Adhesion, 2010, 86(11): 1086-1110 doi: 10.1080/00218464.2010.519257
    [60] Steven-Fountain A, Atkins A, Jeronimidis G, et al. The effect of flexible substrates on pressure-sensitive adhesive performance. International Journal of Adhesion and Adhesives, 2002, 22(6): 423-430 doi: 10.1016/S0143-7496(02)00018-0
    [61] Renvoise J, Burlot D, Marin G, et al. Peeling of PSAs on viscoelastic substrates: a failure criterion. The Journal of Adhesion, 2007, 83(4): 403-416 doi: 10.1080/00218460701282554
    [62] Renvoise J, Burlot D, Marin G, et al. Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. International Journal of Pharmaceutics, 2009, 368(1-2): 83-88 doi: 10.1016/j.ijpharm.2008.09.056
    [63] Sugizaki Y, Shiina T, Tanaka Y, et al. Effects of peel angle on peel force of adhesive tape from soft adherend. Journal of Adhesion Science and Technology, 2016, 30(24): 2637-2654 doi: 10.1080/01694243.2016.1192011
    [64] Sugizaki Y, Suzuki A. Unsteady peeling accompanied by oscillations of adhesive tape from a soft adherend. Soft Matter, 2019, 15(35): 7080-7088 doi: 10.1039/C9SM01198F
    [65] Verdier C, Piau J, Benyahia L. Peeling of acrylic pressure sensitive adhesives: cross-linked versus uncross-linked adhesives. Journal of Adhesion, 1998, 68(1-2): 93-116 doi: 10.1080/00218469808029581
    [66] Urahama Y. Effect of peel load on stringiness phenomena and peel speed of pressure-sensitive adhesive tape. Journal of Adhesion, 1989, 31(1): 47-58 doi: 10.1080/00218468908048213
    [67] Chiche A, Zhang W, Stafford CM, et al. A new design for high-throughput peel tests: statistical analysis and example. Measurement Science and Technology, 2005, 16(1): 183-190 doi: 10.1088/0957-0233/16/1/024
    [68] Ito K, Shitajima K, Karyu N, et al. Influence of the degree of crosslinking on the stringiness of crosslinked polyacrylic pressure‐sensitive adhesives. Journal of Applied Polymer Science, 2014, 131(11): 40336
    [69] Kaelble DH. Peel adhesion: influence of surface energies and adhesive rheology. Journal of Adhesion, 1969, 1(2): 102-123 doi: 10.1080/00218466908078882
    [70] Kaelble D, Ho C. Biaxial bond stress analysis in peeling. Transactions of the Society of Rheology, 1974, 18(2): 219-235 doi: 10.1122/1.549333
    [71] Lake G, Thomas A. The strength of highly elastic materials. Proceedings of the Royal Society of London Series A Mathematical Physical Sciences, 1967, 300(1460): 108-119
    [72] Schach R, Tran Y, Menelle A, et al. Role of chain interpenetration in the adhesion between immiscible polymer melts. Macromolecules, 2007, 40(17): 6325-6332 doi: 10.1021/ma0707990
    [73] Jones RaL. Polymers at Surfaces and Interfaces. Cambridge University Press, 1999
    [74] Ahagon A, Gent A. Effect of interfacial bonding on the strength of adhesion. Journal of Polymer Science: Polymer Physics Edition, 1975, 13(7): 1285-1300 doi: 10.1002/pol.1975.180130703
    [75] Ahagon A, Gent A. Threshold fracture energies for elastomers. Journal of Polymer Science: Polymer Physics Edition, 1975, 13(10): 1903-1911 doi: 10.1002/pol.1975.180131005
    [76] Ahn D, Shull KR. Effects of methylation and neutralization of carboxylated poly(n-butyl acrylate) on the interfacial and bulk contributions to adhesion. Langmuir, 1998, 14(13): 3637-3645 doi: 10.1021/la971395b
    [77] Ahn D, Shull KR. Effects of substrate modification on the interfacial adhesion of acrylic elastomers. Langmuir, 1998, 14(13): 3646-3654 doi: 10.1021/la9713964
    [78] Persson B, Albohr O, Heinrich G, et al. Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter, 2005, 17(44): R1071 doi: 10.1088/0953-8984/17/44/R01
    [79] Takahashi K, Yamagata Y, Inaba K, et al. Characterization of tack strength based on cavity-growth criterion. Langmuir, 2016, 32(14): 3525-3531 doi: 10.1021/acs.langmuir.5b04705
    [80] Glassmaker N, Hui C, Yamaguchi T, et al. Detachment of stretched viscoelastic fibrils. The European Physical Journal E, 2008, 25(3): 253-266 doi: 10.1140/epje/i2007-10287-y
    [81] Yamaguchi T, Morita H, Doi M. Modeling on debonding dynamics of pressure-sensitive adhesives. The European Physical Journal E, 2006, 20(1): 7-17 doi: 10.1140/epje/i2005-10078-6
    [82] Yamaguchi T, Doi M. Debonding dynamics of pressure-sensitive adhesives: 3D block model. The European Physical Journal E, 2006, 21(4): 331-339 doi: 10.1140/epje/i2006-10073-5
    [83] Yamaguchi T, Creton C, Doi M. Simple model on debonding of soft adhesives. Soft Matter, 2018, 14(30): 6206-6213 doi: 10.1039/C8SM00723C
    [84] Bartlett MD, Croll AB, King DR, et al. Looking beyond fibrillar features to scale gecko‐like adhesion. Advanced Materials, 2012, 24(8): 1078-1083 doi: 10.1002/adma.201104191
    [85] Bartlett MD, Croll AB, Crosby AJ. Designing bio‐inspired adhesives for shear loading: from simple structures to complex patterns. Advanced Functional Materials, 2012, 22(23): 4985-4992 doi: 10.1002/adfm.201201344
    [86] King DR, Crosby AJ. Optimizing adhesive design by understanding compliance. ACS Applied Materials & Interfaces, 2015, 7(50): 27771-27781
    [87] Kendall K. Thin-film peeling-the elastic term. Journal of Physics D: Applied Physics, 1975, 8(13): 1449 doi: 10.1088/0022-3727/8/13/005
    [88] Kendall K. Crack propagation in lap shear joints. Journal of Physics D: Applied Physics, 1975, 8(5): 512 doi: 10.1088/0022-3727/8/5/010
    [89] Mojdehi AR, Holmes DP, Dillard DA. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure. Soft Matter, 2017, 13(41): 7529-7536 doi: 10.1039/C7SM01098B
    [90] Yin H, Chen S, Liang L, et al. Quantitative prediction of the whole peeling process of an elastic film on a rigid substrate. Journal of Applied Mechanics, 2018, 85(9): 091004 doi: 10.1115/1.4040336
    [91] Yin H, Liang L, Wei Y, et al. Determination of the interface properties in an elastic film/substrate system. International Journal of Solids and Structures, 2020, 191: 473-485
    [92] Eremeyev VA, Naumenko K. A relationship between effective work of adhesion and peel force for thin hyperelastic films undergoing large deformation. Mechanics Research Communications, 2015, 69: 24-26 doi: 10.1016/j.mechrescom.2015.06.001
    [93] He L, Lou J, Kitipornchai S, et al. Peeling mechanics of hyperelastic beams: bending effect. International Journal of Solids and Structures, 2019, 167: 184-191 doi: 10.1016/j.ijsolstr.2019.03.011
    [94] Huang Y, Yuan J, Zhang Y, et al. Interfacial delamination of inorganic films on viscoelastic substrates. Journal of Applied Mechanics, 2016, 83(10): 101005 doi: 10.1115/1.4034116
    [95] Zhang T, Yuk H, Lin ST, et al. Tough and tunable adhesion of hydrogels: experiments and models. Acta Mechanica Sinica, 2017, 33(3): 543-554 doi: 10.1007/s10409-017-0661-z
    [96] Yuk H, Zhang T, Lin S, et al. Tough bonding of hydrogels to diverse non-porous surfaces. Nature Materials, 2016, 15(2): 190-196 doi: 10.1038/nmat4463
    [97] Menga N, Afferrante L, Pugno N, et al. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates. Journal of the Mechanics and Physics of Solids, 2018, 113: 56-64 doi: 10.1016/j.jmps.2018.01.010
    [98] Afferrante L, Carbone G. The ultratough peeling of elastic tapes from viscoelastic substrates. Journal of the Mechanics and Physics of Solids, 2016, 96: 223-234 doi: 10.1016/j.jmps.2016.07.013
    [99] Pierro E, Afferrante L, Carbone G. On the peeling of elastic tapes from viscoelastic substrates: designing materials for ultratough peeling. Tribology International, 2020, 146: 106060 doi: 10.1016/j.triboint.2019.106060
    [100] Chaudhury MK. Rate-dependent fracture at adhesive interface. The Journal of Physical Chemistry B, 1999, 103(31): 6562-6566 doi: 10.1021/jp9906482
    [101] Ghatak A, Vorvolakos K, She H, et al. Interfacial rate processes in adhesion and friction. The Journal of Physical Chemistry B, 2000: 4018-4030
    [102] Lavoie SR, Long R, Tang T. Rate dependent fracture of a double cantilever beam with combined bulk and interfacial dissipation. International Journal of Solids and Structures, 2015, 75: 277-286
    [103] Feng X, Meitl MA, Bowen AM, et al. Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23(25): 12555-12560 doi: 10.1021/la701555n
    [104] Tang J, Li J, Vlassak JJ, et al. Adhesion between highly stretchable materials. Soft Matter, 2016, 12(4): 1093-1099 doi: 10.1039/C5SM02305J
    [105] Tay T. Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Applied Mechanics Reviews, 2003, 56(1): 1-32 doi: 10.1115/1.1504848
    [106] Krueger R. Virtual crack closure technique: history, approach, and applications. Applied Mechanics Reviews, 2004, 57(2): 109-143 doi: 10.1115/1.1595677
    [107] Raju I. Calculation of strain-energy release rates with higher order and singular finite elements. Engineering Fracture Mechanics, 1987, 28(3): 251-274 doi: 10.1016/0013-7944(87)90220-7
    [108] Shivakumar K, Tan P, Newman Jr J. A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International Journal of Fracture, 1988, 36: 43-50
    [109] Raju I, Crews Jr J, Aminpour M. Convergence of strain energy release rate components for edge-delaminated composite laminates. Engineering Fracture Mechanics, 1988, 30(3): 383-396 doi: 10.1016/0013-7944(88)90196-8
    [110] Davidson BD, Gharibian SJ, Yu L. Evaluation of energy release rate-based approaches for predicting delamination growth in laminated composites. International Journal of Fracture, 2000, 105(4): 343-365 doi: 10.1023/A:1007647226760
    [111] Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics Physics of Solids, 1960, 8(2): 100-104 doi: 10.1016/0022-5096(60)90013-2
    [112] Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7(1): 55-129
    [113] Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Research, 1976, 6(6): 773-781 doi: 10.1016/0008-8846(76)90007-7
    [114] Robinson P, Besant T, Hitchings D. Delamination Growth Prediction Using a Finite Element Approach. European Structural Integrity Society. Elsevier. 2000: 135-147
    [115] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620 doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [116] Alfano G, Crisfield MA. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001, 50(7): 1701-1736 doi: 10.1002/nme.93
    [117] Alfano G. On the influence of the shape of the interface law on the application of cohesive-zone models. Composites Science and Technology, 2006, 66(6): 723-730 doi: 10.1016/j.compscitech.2004.12.024
    [118] Camanho PP, Davila CG, De Moura M. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials, 2003, 37(16): 1415-1438 doi: 10.1177/0021998303034505
    [119] Turon A, Camanho PP, Costa J, et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of Materials, 2006, 38(11): 1072-1089 doi: 10.1016/j.mechmat.2005.10.003
    [120] Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 417-418
    [121] Mcgarry JP, Máirtín éó, Parry G, et al. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. Journal of the Mechanics Physics of Solids, 2014, 63: 336-362 doi: 10.1016/j.jmps.2013.08.020
    [122] Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics Physics of Solids, 2009, 57(6): 891-908 doi: 10.1016/j.jmps.2008.10.003
    [123] Park K, Paulino GH. Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 2011, 64(6): 060802 doi: 10.1115/1.4023110
    [124] Corigliano A, Mariani S, Pandolfi A. Numerical modeling of rate-dependent debonding processes in composites. Composite Structures, 2003, 61(1-2): 39-50 doi: 10.1016/S0263-8223(03)00030-8
    [125] Gozluklu B, Coker D. Modeling of dynamic crack propagation using rate dependent interface model. Theoretical Applied Fracture Mechanics, 2016, 85: 191-206 doi: 10.1016/j.tafmec.2016.01.010
    [126] Fager LO, Bassani J. Stable crack growth in rate-dependent materials with damage. Engineering Materials and Technology, 1993, 115(3): 256-261
    [127] Corigliano A, Allix O. Some aspects of interlaminar degradation in composites. Computer Methods in Applied Mechanics and Engineering, 2000, 185(2-4): 203-224 doi: 10.1016/S0045-7825(99)00260-1
    [128] Corigliano A, Ricci M. Rate-dependent interface models: formulation and numerical applications. International Journal of Solids Structures, 2001, 38(4): 547-576 doi: 10.1016/S0020-7683(00)00088-3
    [129] Giraldo-Londoño O, Spring DW, Paulino GH, et al. An efficient mixed-mode rate-dependent cohesive fracture model using sigmoidal functions. Engineering Fracture Mechanics, 2018, 192: 307-327 doi: 10.1016/j.engfracmech.2017.12.016
    [130] Rahul-Kumar P, Jagota A, Bennison S, et al. Polymer interfacial fracture simulations using cohesive elements. Acta Materialia, 1999, 47(15-16): 4161-4169 doi: 10.1016/S1359-6454(99)00276-1
    [131] Allen DH, Searcy CR. A micromechanical model for a viscoelastic cohesive zone. International Journal of Fracture, 2001, 107(2): 159-176 doi: 10.1023/A:1007693116116
    [132] Liechti KM, Wu JD. Mixed-mode, time-dependent rubber/metal debonding. Journal of the Mechanics Physics of Solids, 2001, 49(5): 1039-1072 doi: 10.1016/S0022-5096(00)00065-X
    [133] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives: I. Modeling approach. International Journal of Adhesion Adhesives, 2003, 23(1): 9-13 doi: 10.1016/S0143-7496(02)00062-3
    [134] Musto M, Alfano G. A novel rate-dependent cohesive-zone model combining damage and visco-elasticity. Computers Structures, 2013, 118: 126-133 doi: 10.1016/j.compstruc.2012.12.020
    [135] Musto M, Alfano G. A fractional rate‐dependent cohesive‐zone model. International Journal for Numerical Methods in Engineering, 2015, 103(5): 313-341 doi: 10.1002/nme.4885
    [136] Giraldo-Londoño O, Paulino GH, Buttlar WG. Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model: theory, implementation, and numerical results. International Journal of Fracture, 2019, 216(1): 1-29 doi: 10.1007/s10704-018-00334-w
    [137] Hui CY, Liu Z, Minsky H, et al. Mechanics of an adhesive tape in a zero degree peel test: effect of large deformation and material nonlinearity. Soft Matter, 2018, 14(47): 9681-9692 doi: 10.1039/C8SM01731J
    [138] Liu Z, Minsky H, Creton C, et al. Mechanics of zero degree peel test on a tape—effects of large deformation, material nonlinearity, and finite bond length. Extreme Mechanics Letters, 2019, 32: 100518 doi: 10.1016/j.eml.2019.100518
    [139] Mohammed I, Charalambides M, Kinloch A. Modelling the interfacial peeling of pressure-sensitive adhesives. Journal of Non-Newtonian Fluid Mechanics, 2015, 222: 141-150 doi: 10.1016/j.jnnfm.2014.10.005
    [140] Mohammed I, Charalambides M, Kinloch A. Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives. Journal of Non-Newtonian Fluid Mechanics, 2016, 233: 85-94 doi: 10.1016/j.jnnfm.2016.01.016
    [141] Jagota A, Bennison S, Smith C. Analysis of a compressive shear test for adhesion between elastomeric polymers and rigid substrates. International Journal of Fracture, 2000, 104(2): 105-130 doi: 10.1023/A:1007617102311
    [142] Seshadri M, Saigal S, Jagota A, et al. Scaling of fracture energy in tensile debonding of viscoelastic films. Journal of Applied Physics, 2007, 101(9): 093504 doi: 10.1063/1.2717550
    [143] Pelfrene J, Van Dam S, Van Paepegem W. Numerical analysis of the peel test for characterisation of interfacial debonding in laminated glass. International Journal of Adhesion Adhesives, 2015, 62: 146-153 doi: 10.1016/j.ijadhadh.2015.07.010
    [144] Ghatak A, Chaudhury MK. Adhesion-induced instability patterns in thin confined elastic film. Langmuir, 2003, 19(7): 2621-2631 doi: 10.1021/la026932t
    [145] Chakrabarti A, Chaudhury MK. Direct measurement of the surface tension of a soft elastic hydrogel: exploration of elastocapillary instability in adhesion. Langmuir, 2013, 29(23): 6926-6935 doi: 10.1021/la401115j
    [146] Chaudhury MK, Chakrabarti A, Ghatak A. Adhesion-induced instabilities and pattern formation in thin films of elastomers and gels. The European Physical Journal E, 2015, 38(7): 1-26
    [147] Mukherjee B, Dillard DA, Moore RB, et al. Debonding of confined elastomeric layer using cohesive zone model. International Journal of Adhesion and Adhesives, 2016, 66: 114-127 doi: 10.1016/j.ijadhadh.2015.12.006
    [148] Mukherjee B, Batra RC, Dillard DA. Effect of confinement and interfacial adhesion on peeling of a flexible plate from an elastomeric layer. International Journal of Solids and Structures, 2017, 110: 385-403
    [149] Mukherjee B, Dillard DA, Batra RC. On preferential debonding during demolding of a sandwiched elastomeric layer. International Journal of Solids and Structures, 2019, 170: 123-141 doi: 10.1016/j.ijsolstr.2019.04.018
    [150] Shull KR, Flanigan CM, Crosby AJ. Fingering instabilities of confined elastic layers in tension. Physical Review Letters, 2000, 84(14): 3057 doi: 10.1103/PhysRevLett.84.3057
    [151] Lin S, Mao Y, Radovitzky R, et al. Instabilities in confined elastic layers under tension: Fringe, fingering and cavitation. Journal of the Mechanics Physics of Solids, 2017, 106: 229-256 doi: 10.1016/j.jmps.2017.05.011
    [152] Fu Y, Lu H, Nian G, et al. Size-dependent inertial cavitation of soft materials. Journal of the Mechanics Physics of Solids, 2020, 137: 103859 doi: 10.1016/j.jmps.2019.103859
    [153] Gent A, Park B. Failure processes in elastomers at or near a rigid spherical inclusion. Journal of Materials Science, 1984, 19(6): 1947-1956 doi: 10.1007/BF00550265
    [154] Gent A. Cavitation in rubber: a cautionary tale. Rubber Chemistry Technology, 1990, 63(3): 49-53 doi: 10.5254/1.3538266
    [155] Lin S, Mao Y, Yuk H, et al. Material-stiffening suppresses elastic fingering and fringe instabilities. International Journal of Solids Structures, 2018, 139: 96-104
    [156] Zhong D, Liu J, Xiang Y, et al. Effect of partition on the mechanical behaviors of soft adhesive layers. Journal of Applied Mechanics, 2019, 86(6): 061003 doi: 10.1115/1.4042764
    [157] Ni X, Chen C, Li J. Interfacial fatigue fracture of tissue adhesive hydrogels. Extreme Mechanics Letters, 2020, 34: 100601 doi: 10.1016/j.eml.2019.100601
    [158] Zhang W, Gao Y, Yang H, et al. Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters, 2020, 39: 100813 doi: 10.1016/j.eml.2020.100813
    [159] Zhang W, Hu J, Yang H, et al. Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43: 101182 doi: 10.1016/j.eml.2021.101182
    [160] Liu J, Lin S, Liu X, et al. Fatigue-resistant adhesion of hydrogels. Nature Communications, 2020, 11(1): 1071 doi: 10.1038/s41467-020-14871-3
    [161] Zhu Z, Cheng Q, Jiang C, et al. Scratch behavior of the aged hydrogenated nitrile butadiene rubber. Wear, 2016, 352: 155-159
    [162] Yashima S, Takase N, Kurokawa T, et al. Friction of hydrogels with controlled surface roughness on solid flat substrates. Soft Matter, 2014, 10(18): 3192-3199 doi: 10.1039/C3SM52883A
    [163] Pan YS, Xiong DS, Ma RY. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear, 2007, 262(7-8): 1021-1025 doi: 10.1016/j.wear.2006.10.005
    [164] Gong JP. Friction and lubrication of hydrogels—its richness and complexity. Soft Matter, 2006, 2(7): 544-552 doi: 10.1039/B603209P
    [165] Freeman ME, Furey MJ, Love BJ, et al. Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear, 2000, 241(2): 129-135 doi: 10.1016/S0043-1648(00)00387-2
    [166] Karobi SN, Sun TL, Kurokawa T, et al. Creep behavior and delayed fracture of tough polyampholyte hydrogels by tensile test. Macromolecules, 2016, 49(15): 5630-5636 doi: 10.1021/acs.macromol.6b01016
    [167] Bouklas N, Landis CM, Huang R. Effect of solvent diffusion on crack-tip fields and driving force for fracture of hydrogels. Journal of Applied Mechanics, 2015, 82(8): 081007 doi: 10.1115/1.4030587
    [168] Wang X, Hong W. Delayed fracture in gels. Soft Matter, 2012, 8(31): 8171-8178 doi: 10.1039/c2sm25553g
    [169] Stratigaki M, Baumann C, Van Breemen LC, et al. Fractography of poly (N-isopropylacrylamide) hydrogel networks crosslinked with mechanofluorophores using confocal laser scanning microscopy. Polymer Chemistry, 2020, 11(2): 358-366 doi: 10.1039/C9PY00819E
    [170] Slootman J, Waltz V, Yeh CJ, et al. Quantifying rate- and temperature-dependent molecular damage in elastomer fracture. Physical Review X, 2020, 10(4): 041045 doi: 10.1103/PhysRevX.10.041045
    [171] Matsuda T, Kawakami R, Nakajima T, et al. Crack tip field of a double-network gel: visualization of covalent bond scission through mechanoradical polymerization. Macromolecules, 2020, 53(20): 8787-8795 doi: 10.1021/acs.macromol.0c01485
    [172] Chen Y, Yeh CJ, Qi Y, et al. From force-responsive molecules to quantifying and mapping stresses in soft materials. Science Advances, 2020, 6(20): eaaz5093 doi: 10.1126/sciadv.aaz5093
    [173] Parameswar AV, Dikshit KV, Movafaghi S, et al. Mechanochemistry activated covalent conjugation reactions in soft hydrogels induced by interfacial failure. ACS Applied Materials & Interfaces, 2021, 13(1): 1486-1492
    [174] Chen Y, Mellot G, Van Luijk D, et al. Mechanochemical tools for polymer materials. Chemical Society Reviews, 2021, 50(6): 4100-4140 doi: 10.1039/D0CS00940G
    [175] Yang J, Bai R, Chen B, et al. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Advanced Functional Materials, 2020, 30(2): 1901693 doi: 10.1002/adfm.201901693
    [176] Cha C, Antoniadou E, Lee M, et al. Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue. Angewandte Chemie International Edition, 2013, 52(27): 6949-6952 doi: 10.1002/anie.201302925
    [177] Yu Y, Yuk H, Parada GA, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Advanced Materials, 2019, 31(7): 1807101 doi: 10.1002/adma.201807101
    [178] Yuk H, Zhang T, Parada GA, et al. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nature Communications, 2016, 7(1): 1-11
    [179] Cheng S, Yang C, Yang X, et al. Dual-primer adhesion of polymer networks of dissimilar chemistries. Extreme Mechanics Letters, 2020, 38: 100756 doi: 10.1016/j.eml.2020.100756
    [180] Liu Q, Nian G, Yang C, et al. Bonding dissimilar polymer networks in various manufacturing processes. Nature Communications, 2018, 9(1): 1-11 doi: 10.1038/s41467-017-02088-w
    [181] Hu X, Nian G, Liang X, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Applied Materials & Interfaces, 2019, 11(10): 10292-10300
    [182] Li J, Celiz A, Yang J, et al. Tough adhesives for diverse wet surfaces. Science, 2017, 357(6349): 378-381 doi: 10.1126/science.aah6362
    [183] Gao Y, Chen J, Han X, et al. A universal strategy for tough adhesion of wet soft material. Advanced Functional Materials, 2020, 30(36): 2003207 doi: 10.1002/adfm.202003207
    [184] Yang J, Bai R, Suo Z. Topological adhesion of wet materials. Advanced Materials, 2018, 30(25): 1800671 doi: 10.1002/adma.201800671
    [185] Yang H, Li C, Tang J, et al. Strong and degradable adhesion of hydrogels. ACS Applied Bio Materials, 2019, 2(5): 1781-1786 doi: 10.1021/acsabm.9b00103
    [186] Chen B, Yang J, Bai R, et al. Molecular staples for tough and stretchable adhesion in integrated soft materials. Advanced Healthcare Materials, 2019, 8(19): 1900810 doi: 10.1002/adhm.201900810
    [187] Wallin TJ, Simonsen LE, Pan W, et al. 3D printable tough silicone double networks. Nature Communications, 2020, 11(1): 4000 doi: 10.1038/s41467-020-17816-y
    [188] Yang H, Li C, Yang M, et al. Printing hydrogels and elastomers in arbitrary sequence with strong adhesion. Advanced Functional Materials, 2019, 29(27): 1901721
    [189] Zhao D, Liu Y, Liu B, et al. 3D printing method for tough multifunctional particle-based double-network hydrogels. ACS Applied Materials & Interfaces, 2021, 13(11): 13714-13723
    [190] Croll AB, Hosseini N, Bartlett MD. Switchable adhesives for multifunctional interfaces. Advanced Materials Technologies, 2019, 4(8): 1900193 doi: 10.1002/admt.201900193
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  202
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 录用日期:  2021-06-12
  • 网络出版日期:  2021-06-12
  • 刊出日期:  2021-07-18

目录

    /

    返回文章
    返回