EI、Scopus 收录
中文核心期刊

柱形汇聚激波冲击球形重气体界面的实验研究

王显圣, 司廷, 罗喜胜, 杨基明

王显圣, 司廷, 罗喜胜, 杨基明. 柱形汇聚激波冲击球形重气体界面的实验研究[J]. 力学学报, 2012, (3): 473-480. DOI: 10.6052/0459-1879-2012-3-20120302
引用本文: 王显圣, 司廷, 罗喜胜, 杨基明. 柱形汇聚激波冲击球形重气体界面的实验研究[J]. 力学学报, 2012, (3): 473-480. DOI: 10.6052/0459-1879-2012-3-20120302
Wang Xiansheng, Si Ting, Luo Xisheng, Yang Jiming. EXPERIMENTAL INVESTIGATION ON A SPHERICAL HEAVY-GAS INTERFACE ACCELERATED BY A CYLINDRICAL CONVERGING SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 473-480. DOI: 10.6052/0459-1879-2012-3-20120302
Citation: Wang Xiansheng, Si Ting, Luo Xisheng, Yang Jiming. EXPERIMENTAL INVESTIGATION ON A SPHERICAL HEAVY-GAS INTERFACE ACCELERATED BY A CYLINDRICAL CONVERGING SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 473-480. DOI: 10.6052/0459-1879-2012-3-20120302
王显圣, 司廷, 罗喜胜, 杨基明. 柱形汇聚激波冲击球形重气体界面的实验研究[J]. 力学学报, 2012, (3): 473-480. CSTR: 32045.14.0459-1879-2012-3-20120302
引用本文: 王显圣, 司廷, 罗喜胜, 杨基明. 柱形汇聚激波冲击球形重气体界面的实验研究[J]. 力学学报, 2012, (3): 473-480. CSTR: 32045.14.0459-1879-2012-3-20120302
Wang Xiansheng, Si Ting, Luo Xisheng, Yang Jiming. EXPERIMENTAL INVESTIGATION ON A SPHERICAL HEAVY-GAS INTERFACE ACCELERATED BY A CYLINDRICAL CONVERGING SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 473-480. CSTR: 32045.14.0459-1879-2012-3-20120302
Citation: Wang Xiansheng, Si Ting, Luo Xisheng, Yang Jiming. EXPERIMENTAL INVESTIGATION ON A SPHERICAL HEAVY-GAS INTERFACE ACCELERATED BY A CYLINDRICAL CONVERGING SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 473-480. CSTR: 32045.14.0459-1879-2012-3-20120302

柱形汇聚激波冲击球形重气体界面的实验研究

基金项目: 国家自然科学基金(10972214)和中央高校基本科研业 务费专项资金(WK2090050014)资助项目.
详细信息
  • 中图分类号: O354.5

EXPERIMENTAL INVESTIGATION ON A SPHERICAL HEAVY-GAS INTERFACE ACCELERATED BY A CYLINDRICAL CONVERGING SHOCK WAVE

Funds: The project was supported by the National Natural Science Foundation of China (10972214) and the Fundamental Research Funds for the Central Universities (WK2090050014).
  • 摘要: 采用高速纹影法实验研究了柱形汇聚激波与球形重气体界面相互作用的 Richtmyer-Meshkov不稳定性问题. 激波管实验段基于激波动力学理论设计, 将马赫数为1.2 的平面激波转化为柱形汇聚激波, 气体界面由肥皂膜分隔六氟化硫(内)和空气(外)得到. 采用高速摄影机在单次实验中拍摄激波运动的全过程, 对柱形激波的形成进行了实验验证, 并进一步观测了汇聚激波与球形气体界面相互作用过程中的波系发展和气体界面变形以及反射激波同已变形界面二次作用的流场演化. 结果表明: 当柱形汇聚激波穿过气泡界面以后, 气泡左侧界面极点沿激波传播方向保持匀速运动, 气泡右侧界面发展成为射流结构, 气泡主体发展成为涡环结构; 在反射激波的二次作用下, 流场中无序运动显著增强并很快进入湍流混合阶段.
    Abstract: The Richtmyer-Meshkov instability of the interaction between a cylindrical converging shock wave and a spherical heavy-gas interface is studied experimentally using the high-speed schlieren photography. The shock tube test section is well-designed based on the shock dynamics theory, which can convert a planar incident shock wave with Mach number of 1.2 into a cylindrical converging shock wave. The spherical gas interface is formed by filling a soap bubble with sulfur hexafluoride (SF6) surrounded by air. The high-speed video camera is used to record the complete process of the shock movement, which validates the method for generating cylindrical shock waves. The evolution of the wave propagation and the interface deformation after the passage of the cylindrical converging shock and the reshock is obtained during a single run. The results indicate that after the cylindrical shock passes across the bubble, the left interface of the bubble moves at a nearly constant velocity; the right interface of the bubble forms a jet and the main body of the bubble develops into a vortex ring. Subsequently, with the reshock impacting with the evolving interface, the disordered motion of the interface is intensified and the flow field quickly turns into a turbulent mixing.
  • Sharp DH. An overview of Rayleigh-Taylor instability. Physica D, 1984, 12: 3-18  
    Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960, 13: 297-319  
    Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969, 4(5): 151-157
    Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions. Annu Rev Fluid Mech, 2011, 43: 117-140  
    Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 1987, 181: 41-76  
    Layes G, Jourdan G, Houas L. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys Rev Lett, 2003, 91(17): 174502  
    Layes G, Metayer OL. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys Fluids, 2007, 19: 042105  
    Layes G, Jourdan G, Houas L. Experimental study on a planar shock wave accelerating a gas bubble. Phys Fluids, 2009, 21: 074102  
    Rudinger G, Somers LM. Behavior of small regions of different gases carried in accelerated gas flows. J Fluid Mech, 1960, 7: 161-176  
    郭文灿, 刘仓理, 谭多望等. 平面弱激波加载下球形气泡演化的实验研究. 高压物理学报, 2009, 23(6): 460-466 (Guo Wencan, Liu Cangli, Tan Duowang, et al. Experimental study on the evolution of a gas bubble impacted by a weakly shock wave. Chinese Journal of High Pressure Physics, 2009, 23(6): 460-466 (in Chinese))
    黄甲, 贾洪印, 罗喜胜等. 激波与氦气泡相互作用的实验与数值研究. 实验流体力学, 2010, 24(2): 10-14 (Huang Jia, Jia Hongyin, Luo Xisheng, et al. Experimental and numerical study on a Helium bubble impacted by a planar shock wave. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 10-14 (in Chinese))
    Bai JS, Zou LY, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys Rev E, 2010, 82: 056318  
    Zhai ZG, Si T, Luo XS, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys Fluids, 2011, 23: 084104  
    Takayama K, Kleine H, Gronig H. An experimental investigation of the stability of converging cylindrical shock waves in air. Exp Fluids, 1987, 5: 315-322  
    Hosseini SHR, Takayama K. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Phys Fluids, 2005, 17: 084101  
    Dimotakis PE, Samtaney R. Planar shock cylindrical focusing by a perfect-gas lens. Phys Fluids, 2006, 18: 031705  
    Zhai ZG, Liu CL, Qin FH, et al. Generation of cylindrical converging shock waves based on shock dynamics theory. Phys Fluids, 2010, 22: 041701  
    Vandenboomgaerde M, Aymard C. Analytical theory for planar shock focusing through perfect gas lens and shock tube experiment designs. Phys Fluids, 2011, 23: 016101  
    Zhang Q, Graham MJ. Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry. Phys Rev Lett, 1997, 79(14): 2674-2677  
    Lombardini M, Deiterding R. Large-eddy simulations of Richtmyer-Meshkov instability in a converging geometry. Phys Fluids, 2010, 22: 091112  
    Han ZY, Yin XZ. Shock Dynamics. Dordrecht: Kluwer Academic Publishers and Science Press, 1993. 22-67
    Chester W. The quasi-cylindrical shock tube. Philos Mag, 1954, 45: 1293-1301
    Chisnell RF. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J Fluid Mech, 1957, 2: 286-298  
    Whitham GB. On the propagation of shock waves through regions of non-uniform area or flow. J Fluid Mech, 1958, 4: 337-360  
计量
  • 文章访问数:  1850
  • HTML全文浏览量:  58
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-11
  • 修回日期:  2012-01-11
  • 刊出日期:  2012-05-17

目录

    /

    返回文章
    返回