EI、Scopus 收录
中文核心期刊

比例边界等几何分析方法I:波导本征问题

张勇, 林皋, 胡志强

张勇, 林皋, 胡志强. 比例边界等几何分析方法I:波导本征问题[J]. 力学学报, 2012, 44(2): 382-392. DOI: 10.6052/0459-1879-2012-2-20120222
引用本文: 张勇, 林皋, 胡志强. 比例边界等几何分析方法I:波导本征问题[J]. 力学学报, 2012, 44(2): 382-392. DOI: 10.6052/0459-1879-2012-2-20120222
Zhang Yong, Lin Gao, Hu Zhiqiang. SCALED BOUNDARY ISOGEOMETRIC ANALYSIS AND ITS APPLICATION I:EIGENVALUE PROBLEM OF WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 382-392. DOI: 10.6052/0459-1879-2012-2-20120222
Citation: Zhang Yong, Lin Gao, Hu Zhiqiang. SCALED BOUNDARY ISOGEOMETRIC ANALYSIS AND ITS APPLICATION I:EIGENVALUE PROBLEM OF WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 382-392. DOI: 10.6052/0459-1879-2012-2-20120222
张勇, 林皋, 胡志强. 比例边界等几何分析方法I:波导本征问题[J]. 力学学报, 2012, 44(2): 382-392. CSTR: 32045.14.0459-1879-2012-2-20120222
引用本文: 张勇, 林皋, 胡志强. 比例边界等几何分析方法I:波导本征问题[J]. 力学学报, 2012, 44(2): 382-392. CSTR: 32045.14.0459-1879-2012-2-20120222
Zhang Yong, Lin Gao, Hu Zhiqiang. SCALED BOUNDARY ISOGEOMETRIC ANALYSIS AND ITS APPLICATION I:EIGENVALUE PROBLEM OF WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 382-392. CSTR: 32045.14.0459-1879-2012-2-20120222
Citation: Zhang Yong, Lin Gao, Hu Zhiqiang. SCALED BOUNDARY ISOGEOMETRIC ANALYSIS AND ITS APPLICATION I:EIGENVALUE PROBLEM OF WAVEGUIDE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 382-392. CSTR: 32045.14.0459-1879-2012-2-20120222

比例边界等几何分析方法I:波导本征问题

基金项目: 中德科学基金 (GZ566) 和国家自然科学基金 (90510018, 90915009, 51009019, 51109134) 资助项目.
详细信息
  • 中图分类号: O242, O441, TN814

SCALED BOUNDARY ISOGEOMETRIC ANALYSIS AND ITS APPLICATION I:EIGENVALUE PROBLEM OF WAVEGUIDE

Funds: The project was supported by the Chinese-Germany Science Foundation (GZ566) and the National Natural Science Foundation of China (90510018, 90915009, 51009019, 51109134).
  • 摘要: 提出比例边界等几何方法 (scaled boundary isogeometric analysis, SBIGA), 并用以求解波导本征值问题. 在比例边界等几何坐标变换的基础上, 利用加权余量法将控制偏微分方程进行离散处理, 半弱化为关于边界控制点变量的二阶常微分方程, 即 TE 波或 TM 波波导的比例边界等几何分析的频域方程以及波导动刚度方程, 同时利用连分式求解波导动刚度矩阵. 通过引入辅助变量进一步得出波导本征方程. 该方法只需在求解域的边界上进行等几何离散, 使问题降低一维, 计算工作量大为节约, 并且由于边界的等几何离散, 使得解的精度更高, 进一步节省求解自由度. 以矩形和 L 形波导的本征问题分析为例, 通过与解析解和其他数值方法比较, 结果表明该方法具有精度高、计算工作量小的优点.
    Abstract: Scaled boundary isogeometric analysis (SBIGA) is approved and applied for waveguide eigenvalue problem. Based on scaled boundary isogeometric transformation, the governing partial differential equations (PDEs) for waveguide eigenvalue problem are semi-weakened to a set of 2nd order ordinary differential equations (ODEs) by weighted residual methods, and transformed to a set of 1st order ODEs about the dynamic stiffness matrix in wavenumber domain. Approximating the dynamic stiffness matrix in the continued fraction expression and introducing auxiliary variables, the ODEs are finally exported to algebraic general eigenvalue equations, and thus the cutoff wavenumber of waveguide is obtained. The main property of SBIGA is that the governing PDEs are isogeometricly discretized on domain boundary, which reduces the spatial dimension by one and analytical feature in the radial direction like traditional SBFEM, additionally, boundary is exactly discretized as its geometry design. The numerical examples, including rectangular and L-shaped waveguides, are presented and compared with analytic solution and other numerical methods. The results show that SBIGA yields high precision results with fewer amounts of DOFs than other methods do.
  • 1 钟万勰. 电磁波导的半解析辛分析. 力学学报, 2003, 35(4): 401-409 (Zhong Wanxie. Symplectic semi-analytical method for electro-magnetic wave guide. Acta Mechanica Sinica, 2003, 35(4): 401-409 (in Chinese))
    2 Guan JM, Su CC. Analysis of metallic waveguides with rectangular boundaries by using the finite-difference method and the simultaneous iteration with the Chebyshev acceleration. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(2): 374-382  
    3 喻志远. 任意截面波导的模式截面场的数值分析. 电波科学学报, 2001, 16(3): 291-314 (Yu Zhiyuan. The numerical analyses of field distributions of cross section for modes in a waveguide having an arbitrary cross section. Chinese Journal of Radio Science, 2001, 16(3): 291-314 (in Chinese))
    4 Pereda JA, Vegas A, Prieto A. An improved compact 2-D finite-difference frequency-domain method for guided wave structure. IEEE Microwave and Wireless Components Letters, 2003, 13(12): 520-522  
    5 肖建康, 许福永. 直线法分析一维非均匀矩形波导的传输特性. 电波科学学报, 2004, 19(6): 772-775 (Xiao Jiankang, Xu Fuyong. Analysis for transmission characteristics of rectangular guide filled with 1-D inhomogeneous dielectric by using the method of lines. Chinese Journal of Radio Science, 2004, 19(6): 772-775 (in Chinese))
    6 梅中磊, 许福永. 一类波导中主模截止波长的等效电路法求解. 微波学报, 2008, 24(2): 34-36 (Mei Zhonglei, Xu Fuyong. Solution of the cutoff wavelengths of the dominant modes for certain waveguides using equivalent circuit method. Journal of Microwaves, 2008, 24(2): 34-36 (in Chinese))
    7 Swaminathan M, Arvas E, Sarka TK, et al. Computation of cut-off wave number of TE and TM modes in waveguides of arbitrary cross sections using a surface integral formulation. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(2): 154-159  
    8 朱满座, 梁昌洪. 用保角变换结合矩量法计算均匀波导的最低截止频率. 西安电子科技大学学报 (自然科学版), 2006, 33(5): 709-715 (Zhu Manzuo, Liang Changhong. MoM calculation of the lowest cutoff frequencies of uniform waveguides by conformal mapping. Journal of Xidian University, 2006, 33(5): 709-715 (in Chinese))
    9 Dong YC, Leong MS, Koo PS, et al. Computation of the propagation characteristics of TE and TM modes in waveguides with the use of the generalized differential quadrature method. Microwave and Optical Technology Letters, 1997, 14(1): 39-44  3.0.CO;2-7" target=_blank>
    10 Ng FL, Bates RHT. Null-field method for waveguides of arbitrary cross section. IEEE Trans Microwave Theory Tech, 1972, 20(10): 658-622  
    11 周平. 脊加载椭圆波导传输特性的矢量有限元法分析. 电波科学学报, 2009, 24(6): 1164-1167 (Zhou Ping. Propagation characteristics analysis for ridged elliptical waveguide by vector finite-element method. Chinese Journal of Radio Science, 2009, 24(6): 1164-1167 (in Chinese))
    12 Bernard S, Zohar Y. Eigenvalues for waveguides containing re-entrant corners by a finite-element method with super-elements. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(2): 214-220  
    13 周平. 任意截面波导本征值问题的边界元分析. 四川师范大学学报 (自然科学版), 1997, 20(4): 93-98 (Zhou Ping. The boundary element method of waveguide eigenvalue problem of arbitrary cross section. Journal of Sichuan Normal University rm (Natural Science ), 1997, 20(4): 93-98 (in Chinese))
    14 Yee HY, Audeh NF. Uniform waveguides with arbitrary cross-section considered by the point-matching method. IEEE Transactions on Microwave Theory and Techniques, 1965, 13(6): 847-851  
    15 张淮清. 电磁场计算中的径向基函数无网格法研究.[博士论文]. 重庆: 重庆大学, 2008 (Zhang Huaiqing. Research on radial basis function meshless method in numercial computation of electromagentic field.[PhD Thesis]. Chongqing:Chongqing University, 2008 (in Chinese))  
    16 Wolf JP, Song CM. Consistent infinitesimal finite element cell method: three-dimensional vector wave equation. International Journal for Numerical Methods in Engineering, 1996, 39(13): 2189-2208  3.0.CO;2-P" target=_blank>
    17 Lin G, Hu ZQ, Du JG. Effects of reservoir boundary absorption on the earthquake response of arch dams. In: Proc. the 14th World Conference on Earthquake Engineering, Beijing, China, 2006  
    18 Lin G, Du JG, Hu ZQ. Earthquake analysis of arch and gravity dams including the effects of foundation inhomogeneity. Frontiers of Architecture and Civil Engineering in China, 2007, 1(1): 41-50  
    19 Yang ZJ. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Engineering Fracture Mechanics, 2006, 73(12): 1711-1731  
    20 李凤志. 渗流自由面分析的比例边界有限元法. 计算物理, 2009, 26 (5): 665-670 (Li Fengzhi. Scaled boundary finite-element method for seepage free surfaces analysis. Chinese Journal of Computational Physics, 2009, 26 (5): 665-670 (in Chinese))
    21 Song CM. The scaled boundary finite element method in structural dynamics. Int J Numer Meth Engng, 2009, 77(8): 1139-1171  
    22 Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Engrg, 2005,194 (39-41): 4135-4195
    23 Reali A. An isogeometric analysis approach for the study of structural vibrations. Journal of Earthquake Engineering, 2006, 10(Special 1): 1-30
    24 Bazilevs Y, Calo VM, Zhang Y, et al. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 2006, 38 (4-5): 310-322
    25 Cottrell JA, Reali A, Bazilevs Y, et al. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering, 2006, 195 (41-43): 5257-5296
    26 Cottrell JA, Hughes TJR, Reali A. Studies of refinement and continuity in isogeometric structural analysis. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44): 4160-4183
    27 Zhang Y, Bazilevs Y, Goswami S, et al. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering, 2007, 196(31-32): 2943-2959
    28 Zhang Y, Lin G, Hu ZQ. Isogeometric analysis based on scaled boundary finite element method. IOP Conference Series: Materials Science and Engineering, 2010, 10(1): 012237
计量
  • 文章访问数:  1643
  • HTML全文浏览量:  87
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-25
  • 修回日期:  2011-11-01
  • 刊出日期:  2012-03-17

目录

    /

    返回文章
    返回