EI、Scopus 收录
中文核心期刊

基于局部插值的结构动力模型降阶方法

邓佳东, 程耿东

邓佳东, 程耿东. 基于局部插值的结构动力模型降阶方法[J]. 力学学报, 2012, 44(2): 342-350. DOI: 10.6052/0459-1879-2012-2-20120218
引用本文: 邓佳东, 程耿东. 基于局部插值的结构动力模型降阶方法[J]. 力学学报, 2012, 44(2): 342-350. DOI: 10.6052/0459-1879-2012-2-20120218
Deng Jiadong, Cheng Gengdong. STRUCTURE DYNAMIC MODEL REDUCTION TECHNIQUE BASED ON LOCAL INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 342-350. DOI: 10.6052/0459-1879-2012-2-20120218
Citation: Deng Jiadong, Cheng Gengdong. STRUCTURE DYNAMIC MODEL REDUCTION TECHNIQUE BASED ON LOCAL INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 342-350. DOI: 10.6052/0459-1879-2012-2-20120218
邓佳东, 程耿东. 基于局部插值的结构动力模型降阶方法[J]. 力学学报, 2012, 44(2): 342-350. CSTR: 32045.14.0459-1879-2012-2-20120218
引用本文: 邓佳东, 程耿东. 基于局部插值的结构动力模型降阶方法[J]. 力学学报, 2012, 44(2): 342-350. CSTR: 32045.14.0459-1879-2012-2-20120218
Deng Jiadong, Cheng Gengdong. STRUCTURE DYNAMIC MODEL REDUCTION TECHNIQUE BASED ON LOCAL INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 342-350. CSTR: 32045.14.0459-1879-2012-2-20120218
Citation: Deng Jiadong, Cheng Gengdong. STRUCTURE DYNAMIC MODEL REDUCTION TECHNIQUE BASED ON LOCAL INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 342-350. CSTR: 32045.14.0459-1879-2012-2-20120218

基于局部插值的结构动力模型降阶方法

基金项目: 国家自然科学基金资助项目(50878038, 90816025).
详细信息
  • 中图分类号: O39

STRUCTURE DYNAMIC MODEL REDUCTION TECHNIQUE BASED ON LOCAL INTERPOLATION

Funds: The project was supported by the National Natural Science Foundation of China (50878038, 90816025).
  • 摘要: 提出了一种基于局部插值对大型结构有限元模型的特征值问题进行降阶的方法. 该方法通过局部插值将复杂结构的有限元模型中节点的位移用凝聚点的位移插值来表示, 从而得到用插值函数表示的简化基向量, 实现对结构广义特征值问题的降阶. 为了提高降阶模型的精度, 采用非协调元的插值函数作为局部插值函数来弱化凝聚后的结构刚度, 并且在有限元模型上进行逆迭代, 对得到的降阶后的广义特征值问题的特征值和特征向量进行改善. 为了提高模型降阶的效率, 采用规整网格包围整个结构生成均匀的凝聚点, 高效地确定了有限元模型中节点所依附的凝聚点. 最后, 对 3 个机床部件的模态分析验证了提出的简化方法的高效性和可行性.
    Abstract: Based on complex structural finite element model, a new reduction method of structural dynamic model using local interpolation is proposed in this paper. The displacement of a node in the finite element model is obtained through interpolation of the displacements of the condensation nodes it attaches to. Every entry of the dynamic condensation matrix is formed by interpolation functions. To improve accuracy of the reduction method, the shape function of the non-conforming element is adopted as the interpolation function to lower the reduced structural stiffness after condensation, and the eigenvalues and eigenvectors are ameliorated through inverse iteration on the finite element model. To enhance efficiency of the reduced method, regular grids which just encompass the structure are employed to generate the condensation points. Due to the regularity of the grids, we can easily determine the condensation points to which a node in the finite element model attaches. Finally, mode analyses of three machine tool components demonstrate the effectiveness and the feasibility of the reduction method proposed in this article.
  • 1 Qu ZQ. Model Order Reduction Techniques: with Applications in Finite Element Analysis. New York: Springer, 2004  
    2 张亚辉, 林家浩. 结构动力学基础. 大连: 大连理工大学出版社, 2007 (Zhang Yahui, Lin Jiahao. Fundamentals of Structure Dynamics. Dalian: Dalian University of Technolgoy Press, 2007 (in Chinese))  
    3 Guyan RJ. Reduction of stiffness and mass matrices. AIAA Journal, 1965, 3(2): 380  
    4 Kuhar EJ, Stahle CV. Dynamic transformation method for modal synthesis. AIAA Journal, 1974, 12(5): 672-678  
    5 O'Callahan J. A procedure for an improved reduced system (IRS) model. In: Proceedings of the 7th International Modal Analysis Conference, Bethel,CT, Society for Experimental Mechanics, 1989
    6 瞿祖庆, 傅志方. 一种高精度动力缩聚法. 机械强度, 1998, 20(3): 230-232 (Qu Zuqing, Fu Zhifang. A high accurate method for dynamic condensation. Journal of Mechanical Strength, 1998, 20(3): 230-232 (in Chinese))
    7 杨秋伟, 刘济科. 一种改进的模型缩聚方法. 力学与实践, 2006, 28(2): 71-72 (Yang Qiuwei, Liu Jike. An imporved method for structural finite element modal reduction. Mechanics in Engineering, 2006, 28(2): 71-72 (in Chinese))
    8 胡宁, 张汝清. 一种大型结构特征值问题的并行解法. 力学学报, 1992, 24(2): 239-242 (Hu Ning, Zhang Ruqing. A parallel algorithm for eigenvalue problems of large-scale structures. Acta Mechanica Sinica, 1992, 24(2): 239-242 (in Chinese))
    9 Ong JH. Improved automatic masters for eigenvalue economization. Finite Elements in Analysis and Design, 1987, 3(2): 149-160  
    10 Cho M, Kim H. Element-based node selection method for reduction of Eigenvalue problems. AIAA Journal, 2004, 42(8): 1677-1684  
    11 Bouhaddi N, Fillod R. A method for selecting master DOF in dynamic substructuring using the Guyan Condensation Method. Computers $\&$ Structures, 1992, 45(5-6): 941-946
    12 Kim KO, Choi YJ. Energy method for selection of degrees of freedom in condensation. AIAA Journal, 2000, 38(7): 1253-1259  
    13 包学海, 池茂儒, 杨飞. 子结构分析中主自由度选取方法研究. 设计与研究, 2009, 36(4): 18-20 (Bao Xuehai, Chi Maoru, Yang Fei. Research on the selection method of master degree of freedom in substructure analysis. Machine Design $\&$ Research, 2009, 36(4): 18-20 (in Chinese))
    14 梁乃刚, 陈其业. 求解有限元分析中大型方程组的择要并缩方法. 力学学报, 1987, 19(3): 259-268 (Liang Naigang, Chen Qiye. Extracting-condensation method for solving large sets of equations in FE analysis. Acta Mechanica Sinica, 1987, 19(3): 259-268 (in Chinese))
    15 向树红, 邱吉宝, 王大钧. 模态分析与动态子结构方法新进展. 力学进展, 2004, 34(3): 289-303 (Xiang Shuhong, Qiu Jibao, Wang Dajun. The recent progresses on modal analysis and dynamic sub-structure methods. Advances in Mechanics, 2004. 34(3): 289-303 (in Chinese))
    16 Wilson EL, Yuan MW, Dickens JM. Dynamic analysis by direct superposition of Ritz vectors. Earthquake Engineering $\&$ Structural Dynamics, 1982, 10(6): 813-821  
    17 Gu JM, Ma ZD, Hulbert GM. A new load-dependent Ritz vector method for structural dynamics analyses: quasi-static Ritz vectors. Finite Elements in Analysis and Design, 2000, 36(3-4): 261-278
    18 刘斌, 丁桦, 时忠民. 基于柔度修正的局部刚体化结构动力模型简化方法. 工程力学, 2007, 24(10): 25-31 (Liu Bin, Ding Hua, Shi Zhongmin. A model reduction method for dynamic analysis based on deformation modification and local rigid body mode. Engineering Mechanics, 2007, 24(10): 25-31 (in Chinese))
    19 郑淑飞, 丁桦. 基于变形修正的局部刚体化动力模型简化方法. 力学与实践, 2008, 30(6): 31-34 (Zheng Shufei, Ding Hua. A model reduction method for dynamic analysis based on deformation modification and local rigid body mode. Mechanics in Engineering, 2008, 30(6): 31-34 (in Chinese))
    20 Saad Y. Numerical Methods for Large Eigenvalue Problems. Manchester: Manchester University Press, 1992
    21 Sleijpen GLG, van der Vorst HA. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Review, 2000, 42(2): 267-293  
    22 Xu JC, Zhou AH. A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation, 2001, 70(233): 17-25
    23 王斌. 结构多性能优化设计及其在航天结构设计中的应用. [博士论文]. 大连: 大连理工大学, 2010 (Wang Bin. Multi-performance optimization of structures and its application in aeraospace structural design. [PhD Thesis]. Dalian: Dalian University of Technology, 2010 (in Chinese))
    24 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36 (Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese))
    25 Cook RD, Malkus DS, Plesha ME. Concepts and Applications of Finite Element Analysis. New York: John Wiley & Sons., 1989
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  59
  • PDF下载量:  1220
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-21
  • 修回日期:  2011-11-12
  • 刊出日期:  2012-03-17

目录

    /

    返回文章
    返回