EI、Scopus 收录
中文核心期刊

高温燃气喷流/主流相互干扰实验研究

陈雪冬, 王发民, 唐贵明

陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究[J]. 力学学报, 2012, 44(2): 230-237. DOI: 10.6052/0459-1879-2012-2-20120205
引用本文: 陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究[J]. 力学学报, 2012, 44(2): 230-237. DOI: 10.6052/0459-1879-2012-2-20120205
Chen Xuedong, Wang Famin, Tang Guiming. THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237. DOI: 10.6052/0459-1879-2012-2-20120205
Citation: Chen Xuedong, Wang Famin, Tang Guiming. THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237. DOI: 10.6052/0459-1879-2012-2-20120205
陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究[J]. 力学学报, 2012, 44(2): 230-237. CSTR: 32045.14.0459-1879-2012-2-20120205
引用本文: 陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究[J]. 力学学报, 2012, 44(2): 230-237. CSTR: 32045.14.0459-1879-2012-2-20120205
Chen Xuedong, Wang Famin, Tang Guiming. THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237. CSTR: 32045.14.0459-1879-2012-2-20120205
Citation: Chen Xuedong, Wang Famin, Tang Guiming. THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237. CSTR: 32045.14.0459-1879-2012-2-20120205

高温燃气喷流/主流相互干扰实验研究

详细信息
  • 中图分类号: V19

THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL

  • 摘要: 报道关于高温燃气自由喷流(热喷流)、燃气喷流/主流干扰流对气动热环境影响的实验研究结果. 其意义在于: 抽象出高超声速飞行器实际飞行时燃气喷流及其干扰流的物理模型, 为高超声速飞行器防热需求提供实验依据. 实验主流由脉冲风洞提供,燃气喷流用氢氧燃烧驱动路德维希管的方式产生. 利用脉冲风洞驱动段压力信号自动控制热气源的产生以保证风洞主流与燃气喷流同步, 利用氢气、氮气和氧气的不同比例实现燃气喷流的热力学相似. 实验技术上完成了高温燃气喷流系统的参数采集与系统状态标定; 实验内容上开展了压缩拐角平板模型的气动热实验研究, 通过实验比较了只有主流流场、只有热喷流流场和既有主流流场又有热喷流流场(即干扰流场)3种工况的热流分布. 实验研究发现,热喷流/主流相互干扰会对压缩拐角平板上某一范围内的气动热环境造成显著影响, 热流峰值较无喷流流场高出一个量级.
    Abstract: This is the first report on the experimental results about the aerothermal environment of high temperature jet flow (HTJF) and its interaction flow. The significance of this experiment is to abstract the physical mode from the real flight of hypersonic aircraft in order to provide experimental evidence for the thermal protection requirements. This experiment used the compression corner as the research object to research the aerothermal environment influenced by the HTJF and the interaction flow by the HTJF in combine with the main flow filed. In this paper, the main flow came from the impulse wind tunnel; the HTJF came from the high enthalpy gas supply platform, which used the ox-hydrogen burner to drive the Ludwieg tube. This paper used the pressure change of the driven section in the impulse wind tunnel to control the producing of the HTJF in order to assure the synchronous operation of the two parts of flow. This paper will present the research about: (1) To standardize the thermodynamic state of the HTJF; (2)The experimental research of the compress corner which include three experimental status: (i) the aerothermal environment in the main flow without the HTJF; (ii) the aerothermal environment in the high temperature jet flow without the main flow; (iii) the aerothermal environment in both the high temperature jet flow and the main flow. It is found from the experiment that the aerothermal environment of the part of the compress corner has great influenced by the high temperature gas flow. The high temperature gas jet flow can cause the heat flux peak an order of magnitude than the heat flux peak without it.
  • 1 Gruber MR, Goss LP. Surface pressure measurements in supersonic transverse injection flowfields. it Propulsion and Power, 1999, 15 (5): 1299-1301
    2 Gnemmi P, Schafer HJ. Experiment and numerical investigations of a transverse jet interaction on a missile body. AIAA 2005-0052, 2005   
    3 Gnemmi P, Adeli R, Longo J. Computational comparisons of the interaction of a lateral jet on a supersonic generic missile. AIAA 2008-6883, 2008
    4 赵桂林, 彭辉, 胡亮等. 超音速流动中侧向喷流干扰特性的实验研究. 力学学报,2004, 36(5): 577-582 (Zhao Guilin, Peng Hui, Hu liang, et al. Experimental investigations of lateral jet interactions in supersonic flows. it Acta Mechanica Sinica, 2004, 36(5): 577-582 (in Chinese))
    5 王军旗, 李素循. 超声速多喷流干扰流场特性研究. 力学学报, 2009, 41(4):575-583 (Wang Junqi, Li Suxun. Study on the characteristics of interaction flowfields induced by supersonic multi-jets. it Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 575-583 (in Chinese))
    6 李素循. 激波与边界层主导的复杂流动. 北京: 科学出版社, 2007 (Li Suxun. The Complex Flows Dominated by the Shock Wave and Boundary Layer. Beijing: Science Press, 2007 (in Chinese))   
    7 唐硕, 祝强军. 吸气式高超声速飞行器动力学建模研究进展. 力学进展,2011, 41(2): 187-200 (Tang Shuo, Zhu Qiangjun. Research progresses on flight dynamics modeling of airbreathing hypersonic flight vehicles. it Advances in Mechanics,2011, 41(2): 187-200 (in Chinese))
    8 杨亚政, 李松年, 杨嘉陵. 高超音速飞行器及其关键技术简论. 力学进展,2007, 37(4): 537-550 (Yang Yazheng, Li Songnian, Yang Jialing. A review on hypersonic vehicles and key technologies. it Advances in Mechanics, 2007, 37(4): 537-550 (in Chinese))
    9 潘静, 阎超, 耿云飞等. 高超声速飞行器气动防热新概念研究. 力学学报,2010, 42(3): 383-388 (Pan Jing, Yan Chao, Geng Yunfei, et al. New conception of aerothermal protection for hypersonic vehicles. it Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 383-388 (in Chinese))
    10 李素循. 近空间飞行器的气动复合控制原理及研究进展. 力学进展,2009, 39(6): 740-755 (Li Suxun. Progress in aerodynamics of combination control for vehicles at high speed. it Advances In Mechanics, 2009, 39(6): 740-755 (in Chinese))
    11 顾声龙, 陈立红, 顾洪斌等. 激励射流在超声速流场中的混合的特性研 究. 力学学报, 2010, 42(5): 957-961 (Gu Shenglong, Chen Lihong, Gu Hongbin, et al. Experimental investigation of the excited jet in supersonic mixing. it Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 957-961 (in Chinese))
    12 李建诚. 高超声速湍流二维压缩拐角压力和热流分布的工程计算方法. 空气动力学学报, 1983, (3): 89-93 (Li Jiancheng. The engineering computational method for the pressure and heat transfer distribution of hypersonic turbulent flow at a two-dimensional compression corner. it Acta Aerodynamica Sinica, 1983, (3): 89-93 (in Chinese))
    13 Stollery JL, Bates L. Turbulent hypersonic viscous interaction. it J Fluid Mech, 1974, 63(1): 145-156  
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  100
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-12
  • 修回日期:  2011-09-21
  • 刊出日期:  2012-03-17

目录

    /

    返回文章
    返回