EI、Scopus 收录
中文核心期刊

线化欧拉方程的高阶间断有限元数值解法研究

High-order discontinuous galerkin solution of linearized Euler equations

  • 摘要: 采用高阶间断有限元法于非结构网格上针对复杂外形数值求解声学控制方程------线化欧拉方程. 背景流场采用有限体积法于结构网格求得, 一种高精度数据传递方法将基于有限体积法的背景流场数据传递到声场计算所采用的较为稀疏的非结构网格上, 保证了背景流场信息的完整和精确. 为提高计算效率, 采用了一种更为直接的Quadrature-FreeImplementation技术以及网格分区并行技术. 数值结果表明采用高阶的情况下即使在稀疏的网格上也可以捕捉到细微的声场结构.

     

    Abstract: In this paper, the linearized Euler equations (LEE) foraero-acoustics are solved using high-order Discontinuous Galerkin (DG) onunstructured grid for complex geometries. The background field, calculatedusing Finite Volume Method on structured grid, is first transferred into theLEE grid with a highly accurate method . A straightforward quadrature-freeimplementation method and parallel computing are used to accelerate thecomputation. Numerical tests indicate that very detailed features can beresolved even though high order DG was used on very coarse grids.

     

/

返回文章
返回