基于面积坐标与B网方法的四边形样条单元
Area coordinates and b-net method for quadrilateral spline elements
-
摘要: 传统等参元方法中, S型等参元完备阶较低,对网格畸变敏感, L型等参元具有高阶完备性但需要使用内部节点. 另外,由于引入等参变换, 采用数值积分可能导致总刚度矩阵出现奇异性.利用三角形面积坐标与B网方法建立了一类平面四边形的样条单元函数,它们的特点是满足协调条件, 克服网格畸变敏感性.其中8节点和12节点单元分别为2次和3次样条函数,对直角坐标分别具有二阶和三阶完备性, 高于相同节点的S型等参元.通过算例测试了这些样条单元, 并与等参元和其它四边形单元比较,数值结果显示了它们的高精度和有效性.Abstract: In general, there are two types of quadrilateralisoparametric elements, Serendipity type and Lagrangian type. The S-typeelements only possess low order completeness, and are sensitive to meshdistortions. The L-type elements possess high order completeness, butinclude interior nodes. By using numerical integrations due to isoparametrictransformation, the overall stiffness matrix may remain singular. In thispaper, a kind of quadrilateral spline elements are constructed by usingtriangular area coordinates interpolation and B-net method. These splineelements have property of conformality, and are insensitive to meshdistortions. The 8 and 12-node quadrilateral elements are represented bybivariate splines of degree 2 and 3, respectively. The two elements possess2 and 3 order completeness in Cartesian coordinates, higher than thecorresponding isoparametric elements with the same nodes. Some numericalexamples are employed to evaluate the performance of the proposed elements.The results show that the new spline elements present higher precision andefficiency in comparison with other quadrilateral elements.