EI、Scopus 收录
中文核心期刊
刘诚 沈永明. 定床弯道内水沙两相运动的数值模拟[J]. 力学学报, 2009, 41(3): 318-328. DOI: 10.6052/0459-1879-2009-3-2007-595
引用本文: 刘诚 沈永明. 定床弯道内水沙两相运动的数值模拟[J]. 力学学报, 2009, 41(3): 318-328. DOI: 10.6052/0459-1879-2009-3-2007-595
Cheng Liu, Yongming Shen. A 3D modeling of water-sediment two-phase movement in flat-bed channel bends[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 318-328. DOI: 10.6052/0459-1879-2009-3-2007-595
Citation: Cheng Liu, Yongming Shen. A 3D modeling of water-sediment two-phase movement in flat-bed channel bends[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 318-328. DOI: 10.6052/0459-1879-2009-3-2007-595

定床弯道内水沙两相运动的数值模拟

A 3D modeling of water-sediment two-phase movement in flat-bed channel bends

  • 摘要: 在适体同位网格中采用非正交曲线坐标系下的三维k-ε-kp固液两相双流体湍流模型研究弯道内水流和悬浮泥沙运动,主要计算了试验室S型水槽内清水流动的三维流场、120°弯道内水沙两相流动中底沙与底流的运动轨迹以及S型水槽内水沙两相流动的两相流场和泥沙浓度场. 对于S型水槽内清水流动,数值结果与试验结果吻合良好. 120°弯道内水沙两相流动中固液两相的运动轨迹在弯道直线段基本重合,在弯道内泥沙轨迹逐步偏离水体轨迹,其偏离程度随泥沙粒径增大而增大. 从S型水槽内水沙两相流动计算结果中发现泥沙纵向流速在壁面附近比水流纵向速度大,在远离壁面区域比水流纵向速度小;弯道内泥沙横向流速比水流横向流速小;垂向流速在直线段和泥沙沉速相当,在弯道内受螺旋水流影响而变化;两相流速差别随泥沙粒径增大而变大;泥沙浓度呈现下浓上稀的分布,在弯道内横向断面上呈现凸岸大凹岸小的分布,泥沙浓度随泥沙粒径增大而减小.

     

    Abstract: Sediment flow and transport in natural rivers are ofconsiderable interest in the field of river engineering. Generally, thereare many channel bends in natural rivers. The flow characteristics andsediment movement are much more complex in channel bends than in straightchannels. In order to study the development of water-sediment movement inchannel bend, a three-dimensional k-ε-kp solid-liquidtwo-phase two-fluid turbulence (STTT) model in curvilinear coordinatesis solved numerically with a finite-volume method on an adaptive grid.The k-ε-kp STTT model wasintroduced by Zhou and it consists of a Boussinesq expression with scalarviscosity coefficients to model STTT Reynolds stresses and particleturbulence flux. The water flow in an S-shaped flume was first used toverify liquid-phase model and the velocities of water flow were wellreproduced by the model. The secondary flow has different magnitude alongthe S-shaped flume. Then the model was used to calculate the movements ofwater and sediment in a 120°channel bend. From both experimental dataand numerical results, it was shown that the sediment shares the samestreamlines of water in the straight zone and deviates from the streamlinesof water at the channel bend. The deviation increases with the increase ofsediment particle diameters. The numerical results of solid-liquid two-phaseflow in an S-shaped flume have shown that the longitudinal velocities ofsolid-phase are bigger than those of liquid-phase near walls and smallerthan those of liquid-phase in other zones, while the transverse velocitiesof solid-phase are smaller than those of liquid-phase, and the verticalvelocities are almost equal to fall velocities of sediments in straightsections and change much in the bends under the action of helical flows. Inaddition, the concentration of sediment is bigger in the bottom than that inthe surface and also bigger in the inner bank of the S-shaped flume thanthat in the outer bank.

     

/

返回文章
返回