Abstract:
One of the challenges in civil engineering is to find an innovative means of suppressing the structural vibration due to earthquake and wind loadings. This paper presents an approach for effectively suppressing vibrations of a structure with variable friction damper using a new Bang-Bang control input. A continuous function of story velocities is used to represent the improved control to reduce chatter, high frequency switching and avoid instability. With a genetic algorithm, the amplitudes of control and preloading friction forces individually prescribed in the controller and damper are optimized for enhancing the seismic performance of buildings. The control strategy for the friction damper is proposed to for three story building with one variable friction damper installed at the first story for seismic reduction. The numerical results indicate that a better reduction of peak response accelerations of floors can be achieved than those of the unmodified controller, and the adaptability of the control system is also improved greatly by comparison with the reduction ratios of the structural response energy excited by different earthquake intensities.