EI、Scopus 收录
中文核心期刊

生物芯片微通道周期性电渗流特性

Flow behavior of periodical electroosmosis in microchannel for biochips

  • 摘要: 以双电层的Poisson-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为基础,提出二维均匀微通道周期电渗流的解析解. 分析结果表明,周期电渗流速度大小不但与双电层特性和外电场有关,而且与流动雷诺数(Re = \omega h^2/\nu )密切相关.随雷诺数增加,双电层滑移速度下降. 当离开固壁距离增加时,双电层以外区域流动速度快速衰减,速度滞后相位角明显增加. 研究发现在微通道有波浪状速度剖面. 给出在低雷诺数时的周期电渗流渐近解,它的速度振幅与定常电渗流速度相同,并具有柱栓式速度分布形态. 还得到在微通道宽对双电层厚的比值(\kappa h)很小时,Debye-H\"uckel近似的周期电渗流解, 并与解析解进行分析比较微通道,双电层,周期电渗流,雷诺数

     

    Abstract: This paper presents an analytical solution for periodical electroosmoticflows in a two-dimensional uniform microchannel based on Poisson-Boltzmannequations for electric double layer (EDL) and Navier-Stokes equation forincompressible viscous fluid. Analytical results indicate that thevelocities of periodical electroosmosis strongly depend on Reynoldsnumber Re = \omega h^2 / \nu , as well as on EDL properties and the appliedelectric field. The slip velocity of EDL decreases as the Reynolds numberincreases. The electroosmosis velocity outside the EDL rapidly decreases,and the lag phase angle of the velocity increases as the distance away from thechannel wall increases. A wave-like velocity profile across the microchannelis found. An asymptotic solution for low Reynolds number is also given inthis paper. Periodical electroosmosis with low Reynolds has the samevelocity amplitude and a plug-like velocity profile as that of the steadyelectroosmosis. Debye-H\"uckel approximate solution of the periodicalelectroosmosis in cases of small \kappa h, the ratio of the microchannelwidth to EDL thickness, is obtained and compared with the analyticalsolution.

     

/

返回文章
返回