EI、Scopus 收录
中文核心期刊

弹性力学中的一种非协调数值流形方法

Incompatible Numerical Manifold Method

  • 摘要: 通过引入数学和物理双重网格,将插值域与积分域分别定义在不同的覆盖上,即在数学网格上进行插值函数的构造,物理网格上完成系统能量泛函积分运算,最后通过覆盖权函数将二者联结在一起. 它的优点是单元网格划分随意,不受复杂边界形状和二相材料界面的限制,单元可以是任意形状,是较之于有限元方法更一般的数值模拟方法. 在4节点四边形数值流形方法中,由于单元总体位移函数包含的完全多项式不完全,使得计算精度不够精确,为此,在单元总体位移函数上附加非协调位移基本项,使之趋于完全,提出了弹性力学问题的一种改进的数值流形方法------非协调数值流形方法. 通过内部自由度静力凝聚处理,导出了消除内参后的单元应变矩阵和单元刚度矩阵,使得在不增加广义节点自由度的前提下,大大提高了数值流形方法的计算精度和计算效率. 同时对非协调项进行了显式处理,可以对工程实践起到更切实的帮助.数值试验表明,它们能够保证收敛,有较高的精度,对畸变不敏感,从而证明了该方法的可行性.

     

    Abstract: This paper deduces the additional incompatible displacement terms on internal parameters for three-dimensional elasticity problems, establishes the improved incompatible numerical manifold method. Based on eliminating the internal parameters, the expressing formula of element strain matrix and element stiffness matrix are given. Calculating accuracy and computing efficiency can be greatly increased by incompatible numerical manifold method without adding generalized degrees of freedom. In order to apply this method to engineering, an explicit treatment of incompatible numerical method is provided. To illustrate the stability of the present approach, numerical examples are analyzed. It is shown that this method produces highly accurate and stable results.Keywords: numerical manifold method; incompatible element; additional displacement term; generalized degree of freedom; static concentration

     

/

返回文章
返回