结构动力响应数值算法耗散和超调特性设计
Two time integral algorithms with numerical dissipation and without overshoot for structural dynamic
-
摘要: 对结构动力响应数值计算问题提出引入多个自由参数来获得所希望的算法特性. 多参数的一个明显的好处就是在算法设计上有更大的自由空间. 利用这些自由参数获得了两个新的无条件稳定、有二阶精度的、有好的耗散和没有超调的单步时间直接积分算法. 在存在阻尼情况下基于有限差分分析理论证明了新算法的这些特性. 其中一个有高频渐进消去特性,且在有阻尼情况下与Houbolt方法相比对高频有更强的耗散. 另一个在低频极限无耗散,高频耗散可以用一自由参数控制. 超调分析结果显示两个新算法都不显示超调,而HHT方法不仅有速度超调,还有位移超调. 最后使用一些算例并通过与传统方法的比较数值地验证了理论分析结果.