EI、Scopus 收录
中文核心期刊

圆弧形超表面对透射声波的可调控制与功能转换

陈阿丽, 王新萌, 汪越胜

陈阿丽, 王新萌, 汪越胜. 圆弧形超表面对透射声波的可调控制与功能转换[J]. 力学学报, 2021, 53(3): 789-801. DOI: 10.6052/0459-1879-20-456
引用本文: 陈阿丽, 王新萌, 汪越胜. 圆弧形超表面对透射声波的可调控制与功能转换[J]. 力学学报, 2021, 53(3): 789-801. DOI: 10.6052/0459-1879-20-456
Chen Ali, Wang Xinmeng, Wang Yuesheng. TUNABLE CONTROL AND FUNCTIONAL SWITCH OF TRANSMITTED ACOUSTIC WAVES BY AN ARCH-SHAPED METASURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 789-801. DOI: 10.6052/0459-1879-20-456
Citation: Chen Ali, Wang Xinmeng, Wang Yuesheng. TUNABLE CONTROL AND FUNCTIONAL SWITCH OF TRANSMITTED ACOUSTIC WAVES BY AN ARCH-SHAPED METASURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 789-801. DOI: 10.6052/0459-1879-20-456
陈阿丽, 王新萌, 汪越胜. 圆弧形超表面对透射声波的可调控制与功能转换[J]. 力学学报, 2021, 53(3): 789-801. CSTR: 32045.14.0459-1879-20-456
引用本文: 陈阿丽, 王新萌, 汪越胜. 圆弧形超表面对透射声波的可调控制与功能转换[J]. 力学学报, 2021, 53(3): 789-801. CSTR: 32045.14.0459-1879-20-456
Chen Ali, Wang Xinmeng, Wang Yuesheng. TUNABLE CONTROL AND FUNCTIONAL SWITCH OF TRANSMITTED ACOUSTIC WAVES BY AN ARCH-SHAPED METASURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 789-801. CSTR: 32045.14.0459-1879-20-456
Citation: Chen Ali, Wang Xinmeng, Wang Yuesheng. TUNABLE CONTROL AND FUNCTIONAL SWITCH OF TRANSMITTED ACOUSTIC WAVES BY AN ARCH-SHAPED METASURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 789-801. CSTR: 32045.14.0459-1879-20-456

圆弧形超表面对透射声波的可调控制与功能转换

基金项目: 1) 国家自然科学基金资助项目((11872101);国家自然科学基金资助项目(11991031);国家自然科学基金资助项目(12021002)
详细信息
    作者简介:

    2) 陈阿丽, 教授, 主要研究方向: 可调声波/弹性波超表面设计及机理, 纳米层状有序结构波动力学, 声子晶体中波的局部化. E-mail: alchen@bjtu.edu.cn

    通讯作者:

    陈阿丽

  • 中图分类号: O422

TUNABLE CONTROL AND FUNCTIONAL SWITCH OF TRANSMITTED ACOUSTIC WAVES BY AN ARCH-SHAPED METASURFACE

  • 摘要: 基于“螺丝-螺母”的工作原理, 设计了可调的透射型三通道螺旋单元,通过调节螺丝的旋拧深度来改变声通道的长度, 从而实现对透射声波相位的调节.利用有限元方法计算了单元的透射波相位差和透射系数随频率和旋拧深度的变化规律.在平面广义Snell定律基础上推导了适用于圆弧形曲面的广义Snell定律.设计了圆弧形超表面, 包括弧状和圆环状两种, 实现了对透射声波波前的可调控制.根据所要实现的声学功能和给定的工作频率,利用单元的透射波相位差随旋拧深度的变化规律和圆弧形表面的广义Snell定律,确定超表面上所需的相位分布梯度及每个单元的旋拧深度,并同时考虑透射系数随旋拧深度的变化规律来对单胞旋拧深度进行适当的调整,以保证超表面具有较高的透射率.利用圆弧形超表面实现了宽频范围内声波的定向折射、波束分离和声束聚焦等声学功能的转换;利用圆环形超表面则实现了三向分波、波场螺旋化及源位置虚拟移动等声学功能的转换.同时针对上述功能进行了全波场的有限元数值模拟和相应的声学实验,实验结果与有限元模拟结果吻合良好, 验证了所设计超表面对声波波前调控的有效性.研究结果将为不规则非平面可调声学器件的设计提供理论指导.
    Abstract: A tunable transmitted three-tunnel helix unit cell is designed based on the working principle of the “screw-nut”. The length of the acoustic tunnel is changed by the screw-in depth of the screw, and then the phase of the transmitted waves can be tuned accordingly. The variations of the phase shift and transmittance of the unit cell with the screw-in depth and frequency are calculated by the finite element method. The generalized Snell's law of an flat surface is extended to an arc-shaped surface in this paper. The arch-shaped and toroidal metasurfaces are designed to regulate the wavefront of the transmitted acoustic wave. According to the presupposed acoustic function and the working frequency, the phase gradient of the metasurface and the screw-in depth of every unit can be determined by the generalized Snell's law of the arc-shaped surface and the variation of the phase shift of the unit cell with the screw-in depth. And the screw-in depth will be modified according to the variation of the transmittance of the unit cell in order to obtain the high transmission. The functional switch between the directional refraction, beam splitting and beam focusing for the arch-shaped metasurface is realized in a broadband frequency region. And the functional switch between the three-way splitting of wave beam, spiral wave generation and virtual movement of the source position is also realized for the toroidal metasurface. The full-field numerical simulations are performed by using the finite element method. And the experimental measurements are also carried out for both arch-shaped and toroidal metasurfaces. The experimental results have a good agreement with the numerical ones, which shows that the metasurfaces we designed are effective for the wavefront modulation of the transmitted acoustic waves. The study in this paper is relevant to the development of tunable irregular non-planar conformal acoustic devices.
  • [1] 马天雪, 苏晓星, 董浩文, 等. 声光子晶体带隙特性与声光耦合作用研究综述. 力学学报, 2017,49(4):743-757

    (Ma Tianxue, Su Xiaoxing, Dong Haowen, et al. Review of bandgap characteristics and acousto-optical coupling in phoxonic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):743-757 (in Chinese))

    [2] 刘坚, 雷济荣, 夏百战. 基于Chebyshev展开的区间穿孔板超材料分析. 力学学报, 2017,49(1):137-148

    (Liu Jian, Lei Jirong, Xia Baizhan. The interval analysis of multilayer-metamaterials with perforated apertures based on Chebyshev expansion. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):137-148 (in Chinese))

    [3] 修晨曦, 楚锡华. 基于微形态模型的颗粒材料中波的频散现象研究. 力学学报, 2018,50(2):315-328

    (Xiu Chenxi, Chu Xihua. Study on dispersion behavior and band gap in granular materials based on a micromorphic model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):315-328 (in Chinese))

    [4] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019,51(3):656-687

    (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):656-687 (in Chinese))

    [5] Wang YF, Wang YZ, Wu B, et al. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 2020,72(4):040801
    [6] Chen HT, Taylor A, Yu NF. A review of metasurfaces: Physics and applications. Reports on Progress in Physics, 2016,79:076401
    [7] Li Y, Liang B, Gu ZM, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports, 2013,3:2546
    [8] 许卫锴, 张蒙, 王伟. 声学超表面研究及应用进展. 功能材料, 2017,11(48):11054-11059

    (Xu Weikai, Zhang Meng, Wang Wei. Research and application advances of acoustic metasurfaces. Journal of Functional Materials, 2017,11(48):11054-11059 (in Chinese))

    [9] 李勇. 声学超构表面. 物理, 2017,46(11):721-730

    (Li Yong. Acoustic metasurfaces. Physics, 2017,46(11):721-730 (in Chinese))

    [10] Assouar B, Liang B, Wu Y, et al. Acoustic metasurfaces. Nature Reviews Materials, 2018,3:460
    [11] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, 2018,67(19):194301

    (Ding Changlin, Dong Yibao, Zhao Xiaopeng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018,67(19):194301 (in Chinese))

    [12] Li Y, Jiang X, Li RQ, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Physical Review Applied, 2014,2:064002
    [13] 唐昆, 邱春印, 柯满竹, 等. 超表面对声波的反常折射作用. 声学技术, 2014,33(S1):85-88

    (Tang Kun, Qiu Chunyin, Ke Manzhu, et al. Highly efficient anomalous refraction of airborne sound through ultrathin metasurfaces. Technical Acoustics, 2014,33(S1):85-88 (in Chinese))

    [14] Wang WQ, Xie YB, Popa BI, et al. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface. Journal of Applied Physics, 2016,120:195103
    [15] Chen J, Xiao J, Lisevych D, et al. Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 2018,9:4920
    [16] Shen C, Díaz-Rubio A, Li JF, et al. A surface impedance-based three-channel acoustic metasurface retroreflector. Applied Physics Letters, 2018,112:183503
    [17] Li Y, Jiang X, Liang B, et al. Metascreen-based acoustic passive phased array. Physical Review Applied, 2015,4:024003
    [18] Lan J, Li YF, Xu Y, et al. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz resonators. Scientific Reports, 2017,7:10587
    [19] Jiang X, Li Y, Zhang LK. Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. The Journal of the Acoustical Society of America, 2017,141:EL363
    [20] Gong KM, Wang XF, Ouyang HJ, et al. Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. Journal of Physics D$:$ Applied Physics, 2019,52:385303
    [21] Li JF, Wang WQ, Xie YB, et al. A sound absorbing metasurface with coupled resonators. Applied Physics Letters, 2016,109:091908
    [22] Shen C, Cummer SA. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces. Physical Review Applied, 2018,9:054009
    [23] Jiménez N, Romero-García V, Pagneux V, et al. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 2017,95:044025
    [24] Huang Sb, Zhou ZL, Li DT, et al. Compact broadband acoustic sink with coherently coupled weak resonances. Science Bulletin, 2020,65:373-379
    [25] Zhu XH, Li JF, Shen C, et al. Non-reciprocal acoustic transmission via space-time modulated membranes. Applied Physics Letters, 2020,116:034101
    [26] Ma GC, Yang M, Xiao SW, et al. Acoustic metasurface with hybrid resonances. Nature Materials, 2014,13:873-878
    [27] Xie BY, Tang K, Cheng H, et al. Coding acoustic metasurfaces. Advanced Materials, 2017,29:1603507
    [28] Xie BY, Cheng H, Tang K, et al. Multiband asymmetric transmission of airborne sound by coded metasurfaces. Physical Review Applied, 2017,7:024010
    [29] Fang XS, Wang X, Li Y. Acoustic splitting and bending with compact coding metasurfaces. Physical Review Applied, 2019,11:064033
    [30] Zhang Y, Xie BY, Liu WW, et al. Anomalous reflection and vortex beam generation by multi-bit coding acoustic metasurfaces. Applied Physics Letters, 2019,114:091905
    [31] Zuo SY, Tian Y, Cheng Y, et al. Asymmetric coding metasurfaces for the controllable projection of acoustic images. Physical Review Materials, 2019,3:065204
    [32] Zuo SY, Cheng Y, Liu XJ. Tunable perfect negative reflection based on an acoustic coding metasurface. Applied Physics Letters, 2019,114:203505
    [33] Chen DC, Zhu XF, Wei Q, et al. Broadband tunable focusing lenses by acoustic coding metasurfaces. Journal of Physics D$:$ Applied Physics, 2020,53:255501
    [34] Cao WK, Wu LT, Zhang C, et al. A reflective acoustic meta-diffuser based on the coding meta-surface. Journal of Applied Physics, 2019,126:194503
    [35] Chen DC, Zhu XF, Wu DJ, et al. Broadband airy-like beams by coded acoustic metasurfaces. Applied Physics Letters, 2019,114:053504
    [36] Shen YX, Zhu XF, Cai FY, et al. Active acoustic metasurface: Complete elimination of grating lobes for high-quality ultrasound focusing and controllable steering. Physical Review Applied, 2019,11:034009
    [37] Zhao JJ, Ye HP, Huang K, et al. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer. Scientific Reports, 2014,4:6257
    [38] Ma GC, Fan XY, Sheng P, et al. Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2018,115:6638-6643
    [39] Chen X, Liu P, Hou ZW, et al. Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale. Scientific Reports, 2017,7:9050
    [40] Liu P, Chen X, Xu WD, et al. Magnetically controlled multifunctional membrane acoustic metasurface. Journal of Applied Physics, 2020,127:185104
    [41] Chen Z, Shao SX, Negahban M, et al. Tunable metasurface for acoustic wave redirection, focusing and source illusion. Journal of Physics D$:$ Applied Physics, 2019,52:395503
    [42] Zhai SL, Song K, Ding CL, et al. Tunable acoustic metasurface with high-Q spectrum splitting. Materials, 2018,11:1976
    [43] Wang XL, Yang J, Liang B, et al. Tunable annular acoustic metasurface for transmitted wavefront modulation. Applied Physics Express, 2020,13:014002
    [44] Song XP, Chen TN, Zhu J. Acoustic reprogrammable metasurface for the multi-frequency tri-channel retroreflector. Applied Physics A, 2019,125:679
    [45] Li P, Chang YF, Du QJ, et al. Continuously tunable acoustic metasurface with rotatable anisotropic three-component resonators. Applied Physics Express, 2020,13:025507
    [46] Xie SH, Fang XS, Li PQ, et al. Tunable double-band perfect absorbers via acoustic metasurfaces with nesting helical tracks. Chinese Physics Letters, 2020,37:054301
    [47] Li XS, Wang YF, Chen AL, et al. Modulation of out-of-plane reflected waves by using acoustic metasurfaces with tapered corrugated holes. Scientific Reports, 2019,9:15856
    [48] Zhao SD, Chen AL, Wang YS, et al. Continuously tunable acoustic metasurface for transmitted wavefront modulation. Physical Review Applied, 2018,10:054066
    [49] Chen AL, Tang QY, Wang HY, et al. Multifunction switching by a flat structurally tunable acoustic metasurface for transmitted waves. Science China Physics, Mechanics & Astronomy, 2020,63:244611
    [50] Fan SW, Zhao SD, Chen AL, et al. Tunable broadband reflective acoustic metasurface. Physical Review Applied, 2019,11(4):044038
    [51] Fan SW, Zhu YF, Cao LY, et al. Broadband tunable lossy metasurface with independent amplitude and phase modulations for acoustic holography. Smart Materials and Structures, 2020,29(10):105038
    [52] Fan SW, Wang YF, Cao LY, et al. Acoustic vortices with high-order orbital angular momentum by a continuously tunable metasurface. Applied Physics Letters, 2020,116(16):163504
    [53] Song XP, Chen TN, Zhu J, et al. Broadband acoustic cloaking and disguising with full-rangle incident angles based on reconfigurable metasurface. International Journal of Modern Physics B, 2019,33:1950273
    [54] Zhou HT, Fan SW, Li XS, et al. Tunable arc-shaped acoustic metasurface carpet cloak. Smart Materials and Structures, 2020,29:065016
    [55] Li XS, Wang YF, Chen AL, et al. An arbitrarily curved acoustic metasurface for three-dimensional reflected wave-front modulation. Journal of Physics D$:$ Applied Physics, 2020,53:195301
    [56] Fan SW, Zhao SD, Cao LY, et al. Reconfigurable curved metasurface for acoustic cloaking and illusion. Physical Review B, 2020,101(2):024104
    [57] Modelling Guide for COMSOL Multiphysics (version 3.5a). COMSOL AB, 2008
    [58] Cao LY, Yang ZC, Xu YL. Steering elastic SH waves in an anomalous way by metasurface. Journal of Sound and Vibration, 2018,418:1-14
    [59] Liu YQ, Liang ZX, Liu F, et al. Source illusion devices for flexural lamb waves using elastic metasurfaces. Physical Review Letters, 2017,119:034301
  • 期刊类型引用(2)

    1. 陈阿丽,汪越胜,王艳锋,周红涛,袁思敏. 声学/弹性相位梯度超表面设计:原理、功能基元、可调和编码. 力学进展. 2022(04): 948-1011 . 百度学术
    2. 冯青松,杨舟,郭文杰,陆建飞,梁玉雄. 基于人工弹簧模型的周期结构带隙计算方法研究. 力学学报. 2021(06): 1684-1697 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  2382
  • HTML全文浏览量:  855
  • PDF下载量:  210
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-12-29
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回