EFFECT OF SURFACE ROUGHNESS ON THE FORMATION OF SHEAR BAND IN Ti-6Al-4V ALLOY CYLINDRICAL SHELL
-
摘要: 剪切带是材料在高应变率加载条件下特有的变形和损伤形式之一,关于影响金属材料中剪切带形成的敏感性因素及其机理的研究,一直是科学研究和工程设计中关注的重点问题. 在柱壳高速坍塌过程中,剪切带优先在内表面形核, 其形核及扩展行为受内表面介观状态的影响显著.本文采用爆轰加载厚壁圆筒坍塌实验技术,结合材料表面处理技术、微结构表征技术和剪切带理论模型分析,研究了内表面粗糙度变化对TC4钛合金柱壳剪切带形成影响的细观动力学规律.结果表明, 在爆炸加载形成的高应变率条件下,表面粗糙度对TC4钛合金柱壳中剪切带形成具有明显影响. 在相同的变形条件下,随着试样内表面粗糙度的增大, 剪切带数量、长度和形核速率均增大;表面粗糙度越大, 部分剪切带扩展速率越快, 剪切带长度差异越大,剪切带的屏蔽效应增强. 分析表明,实验获得的剪切带间距与W-O模型和M模型预测结果基本吻合,具体数值受试样内表面粗糙度影响, 随着表面粗糙度的增大,实验结果逐渐小于预测数值.Abstract: Shear band is one of the special deformations and damage forms of materials under high strain rate loading. The research on the sensitive factors and mechanism of shear band formation in metal materials has always been one of the key issues in scientific research and engineering design. In the process of high-speed collapse of cylindrical shell, the shear band nucleates preferentially in the inner surface, and its nucleation and propagation behavior are significantly affected by the mesoscopic state of the inner surface. In the presented study, the detonation loading of Ti-6AL-4V alloy cylindrical shell was carried out by thick walled cylinder collapse experiment. Combined with surface treatment technology, microstructure characterization technology and shear banding analysis model, the effect of inner surface roughness on the law of mesodynamics of shear band formation in Ti-6AL-4V alloy cylindrical shell was studied through the shear band pattern in samples. The experimental results show that the inner surface roughness has a significant effect on the formation of adiabatic shear bands in Ti-6AL-4V alloy cylindrical shells under high strain rate. The number, length and nucleation rate of adiabatic shear bands in the specimen increase with the increase of the inner surface roughness under the same deformation condition. The results indicate that, the larger surface roughness leads to a stronger shielding effect for the shear bands. Furthermore, the propagating velocity and length of partial adiabatic shear bands in the specimen increase with the increase of the inner surface roughness. The experimental results of shear band spacing are in good agreement with the prediction of W-O model and M model, but the spacing values are influenced by the inner surface roughness of the specimen. With the increase of the inner surface roughness, the experimental results are gradually smaller than the prediction of models.
-
Keywords:
- thick-walled cylinder /
- Ti-6AL-4V alloy /
- surface roughness /
- shear band
-
-
[1] Dodd B, Bai Y. Adiabatic Shear Localization: Frontiers and Advances. Elsevier, 2012 [2] Meyers MA. Dynamic Behavior of Materials. Wiley Press, 1994 [3] Wright TW. The Physics and Mathematics of Adiabatic Shear Bands. Cambridge University Press, 2002 [4] 董杰, 王雨田, 胡晶, 等. 非晶合金剪切带动力学行为研究. 力学学报, 2020,52(2):379-391 (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):379-391 (in Chinese))
[5] 郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368 (Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese))
[6] Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Materialia, 2002,50:575-596 [7] Bai YL. Adiabatic shear banding. Res Mechanica, 1990,31:109-119 [8] Dai LH, Liu LF, Bai YL. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids and Structures, 2004,41(22-23):5979-5993 [9] Dai LH, Bai YL. Basic mechanical behaviors and mechanics of shear banding in BMGs. International Journal of Impact Engineering, 2008,35(8):704-716 [10] Jiang MQ, Dai LH. Formation mechanism of lamellar chips during machining of bulk metallic glass. Acta Materialia, 2009,57(9):2730-2738 [11] Meyers MA, Nesterenko VF, LaSalvia JC, et al. Shear localization in dynamic deformation of materials: Microstructural evolution and self-organization. Materials Science and Engineering$:$ A, 2001,317(1-2):204-225 [12] 刘明涛, 汤铁钢, 胡海波, 等. 不同起爆方式下炸药驱动柱壳膨胀断裂的数值模拟. 爆炸与冲击, 2014,34(4):415-420 (Liu Mingtao, Hu haibo, et al. Numerical simulation of expansion and fracture of cylindrical shell driven by explosives in different detonation methods. Explosion and Shock Waves, 2014,34(4):415-420 (in Chinese))
[13] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象. 爆炸与冲击, 2004,24(2):97-107 (Hu Haibo, Tang Tiegang, Hu Bayi, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells. Explosion and Shock Waves, 2004,24(2):97-107 (in Chinese))
[14] Guo Y, Ruan Q, Zhu S, et al. Temperature rise associated with adiabatic shear band: causality clarified. Physical Review Letters, 2019,122(1):015503 [15] Timothy SP, Hutchings IM. The structure of adiabatic shear bands in a titanium alloy. Acta Metallurgica, 1985,33(4):667-676 [16] Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 1944,15(1):22-32 [17] Yang Y, Yang S, Jiang L. Study on the microstructural characteristics of adiabatic shear band in solid-solution treated ZK60 magnesium alloy. Materials Characterization, 2019,156:109840 [18] 陈海华, 张先锋, 熊玮, 等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020,52(5):1443-1453 (Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1443-1453 (in Chinese))
[19] 黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析. [博士论文]. 绵阳: 中国工程物理研究院, 2010 (Huang Xicheng. Analysis of Mechanical State and Failure Mode of Shell under Implosion and External Explosion. [PhD Thesis]. Mianyang: China Academy of Engineering Physics, 2010)
[20] 朱建士, 陈裕泽. 核武器研制中的力学问题. 力学与实践, 2002(1):67-71 (Zhu Jianshi, Chen Yuze. The mechanics of nuclear weapons development. Mechanics in Engineering, 2002(1):67-71 (in Chinese))
[21] 杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究. 兵工学报, 2018,39(8):1499-1506 (Yang Yunchuan, Zhu Jianjun, Zheng Yu, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell. Acta Armamentari, 2018,39(8):1499-1506 (in Chinese))
[22] Mott NF. A Theory of the Fragmentation of Shells and Bombs//Fragmentation of Rings and Shells. Berlin, Heidelberg: Springer, 2006: 243-294 [23] 刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响. 爆炸与冲击, 2018,38(4):749-758 (Liu Longfei, Zhou Qiang. Effect of surface roughness on impact expansion fracture of 6061aluminum alloy thin-walled cylindrical tube. Explosion and Shock Waves, 2018,38(4):749-758 (in Chinese))
[24] Meyers M, Xue Q, Nesterenko V. Evolution in the patterning of adiabatic shear bands// AIP Conference Proceedings, 2002: 567-570 [25] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应. 爆炸与冲击, 2006,26(2):129-133 (Tang Tiegang, Li Qingzhong, Sun Xuelin, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation. Explosion And Shock Waves, 2006,26(2):129-133 (in Chinese))
[26] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究. 兵工学报, 2019,40(7):1418-1424 (Yu Fuyou, Dong Xinlong, Yu Xinlu, et al. Experimental research on the fracture characteristics of metal cylindrical shells with different packing charges. Acta Armamentarii, 2019,40(7):1418-1424 (in Chinese))
[27] Nesterenko VF, Lazaridi AN, Pershin SA. Localization of deformation in copper by explosive compression of hollow cylinders. Fizika Goreniya i Vzryva, 1989,25(4):154-155 [28] Chen YJ, Meyers MA, Nesterenko VF. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum. Materials Science and Engineering A, 1999,268(1-2):70-82 [29] Lovinger Z, Rittel D, Rosenberg Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders. Mechanics of Materials, 2018,116:130-145 [30] Nesterenko VF, Xue Q, Meyers MA. Self organization of shear bands in stainless steel: Grain size effect. Journal of Physics (IV), 2000,10:269-274 [31] Beetle JC. SEM/1971 (Part I)//Proceedings of the Fourth Annual SEM Symposium III Research Institute. Chieago, 1971: 137-144 [32] Xue Q, Nesterenko VF, Meyers MA. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. International Journal of Impact Engineering, 2003,28(3):257-280 [33] Yang Y, Li XM, Chen SW, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Materials Science and Engineering A, 2010,527(20):5084-5091 [34] 任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究. 兵工学报, 2016,37(1):77-82 (Ren Guowu, Guo Zhaoliang, Tang Tiegang, et al. Experimental research on fracture of metal case under loadingat high strain rate. Acta Armamentarii, 2016,37(1):77-82 (in Chinese))
[35] Lovinger Z, Rittel D, Rosenberg Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders. Journal of the Mechanics and Physics of Solids, 2015,79:134-156 [36] Feng H, Bassim MN. Finite element modeling of the formation of adiabatic shear bands in AISI 4340 steel. Materials Science and Engineering$:$ A, 1999,266(1-2):255-260 [37] Meyers MA, Wang SL. An improved method for shock consolidation of powders. Acta Metallurgica, 1988,36(4):925-936 [38] Dinzart F, Fressengeas C, Molinari A. The catastrophic development of shear localization in thermoviscoplastic materials. Le Journal de Physique IV, 1994,4(C8):C8-435-C8-440 [39] Rittle D, Wang ZG, Dorogoy A. Geometrical imperfection and adiabatic shear banding. International Journal of Impact Engineering, 2008,35(11):1280-1292 [40] Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. Journal of the Mechanics and Physics of Solids, 1987,35(1):95-119 [41] Wright TW, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. International Journal of Plasticity, 1996,12(7):927-934 [42] Molinari A. Collective behavior and spacing of adiabatic shear bands. Journal of the Mechanics and Physics of Solids, 1997,45(9):1551-1575 -
期刊类型引用(3)
1. 胡力,刘龙飞,王旭,杨智程,吴志强. 再结晶组织对TA2纯钛绝热剪切行为的影响. 爆炸与冲击. 2023(01): 98-108 . 百度学术
2. 刘龙飞,刘炼煌,胡力,杨智程. 表面加工塑性层对金属柱壳剪切带自组织单旋起始的影响. 力学学报. 2022(04): 1051-1062 . 本站查看
3. 杨智程,刘龙飞,刘炼煌,殷鹏志,吴志强. 外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响. 高压物理学报. 2022(04): 114-126 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 951
- HTML全文浏览量: 165
- PDF下载量: 81
- 被引次数: 5