EI、Scopus 收录
中文核心期刊

脆性岩石蠕变裂纹成核宏细观力学机理研究

李晓照, 贾亚星, 张骐烁, 戚承志

李晓照, 贾亚星, 张骐烁, 戚承志. 脆性岩石蠕变裂纹成核宏细观力学机理研究[J]. 力学学报, 2021, 53(4): 1059-1069. DOI: 10.6052/0459-1879-20-400
引用本文: 李晓照, 贾亚星, 张骐烁, 戚承志. 脆性岩石蠕变裂纹成核宏细观力学机理研究[J]. 力学学报, 2021, 53(4): 1059-1069. DOI: 10.6052/0459-1879-20-400
Li Xiaozhao, Jia Yaxing, Zhang Qishuo, Qi Chengzhi. A STUDY ON MICRO-MACRO MECHANISMS OF CRACK NUCLEATION DURING CREEP IN BRITTLE ROCKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1059-1069. DOI: 10.6052/0459-1879-20-400
Citation: Li Xiaozhao, Jia Yaxing, Zhang Qishuo, Qi Chengzhi. A STUDY ON MICRO-MACRO MECHANISMS OF CRACK NUCLEATION DURING CREEP IN BRITTLE ROCKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1059-1069. DOI: 10.6052/0459-1879-20-400
李晓照, 贾亚星, 张骐烁, 戚承志. 脆性岩石蠕变裂纹成核宏细观力学机理研究[J]. 力学学报, 2021, 53(4): 1059-1069. CSTR: 32045.14.0459-1879-20-400
引用本文: 李晓照, 贾亚星, 张骐烁, 戚承志. 脆性岩石蠕变裂纹成核宏细观力学机理研究[J]. 力学学报, 2021, 53(4): 1059-1069. CSTR: 32045.14.0459-1879-20-400
Li Xiaozhao, Jia Yaxing, Zhang Qishuo, Qi Chengzhi. A STUDY ON MICRO-MACRO MECHANISMS OF CRACK NUCLEATION DURING CREEP IN BRITTLE ROCKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1059-1069. CSTR: 32045.14.0459-1879-20-400
Citation: Li Xiaozhao, Jia Yaxing, Zhang Qishuo, Qi Chengzhi. A STUDY ON MICRO-MACRO MECHANISMS OF CRACK NUCLEATION DURING CREEP IN BRITTLE ROCKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1059-1069. CSTR: 32045.14.0459-1879-20-400

脆性岩石蠕变裂纹成核宏细观力学机理研究

基金项目: 1)国家自然科学基金(51708016);北京市教委科研计划(KM202110016014);北京建筑大学金字塔人才培养工程(JDYC20200307)
详细信息
    作者简介:

    2)李晓照, 副教授, 主要研究方向: 岩石力学与工程方面的研究工作. E-mail: lixiaozhao@bucea.edu.cn

    通讯作者:

    李晓照

  • 中图分类号: TU452

A STUDY ON MICRO-MACRO MECHANISMS OF CRACK NUCLEATION DURING CREEP IN BRITTLE ROCKS

  • 摘要: 脆性岩石内部细观裂纹扩展、贯通及成核影响下的脆性蠕变行为, 对深部地下工程围岩微震及岩爆事件评价有着重要意义. 然而, 目前能够解释裂纹成核损伤突变影响下, 脆性岩石完整蠕变宏细观力学机理模型的研究很少. 本文基于脆性岩石亚临界裂纹扩展模型、裂纹-应变-声发射事件相关的损伤模型及裂纹成核损伤时间演化路径函数, 提出了一种脆性岩石裂纹成核损伤突变影响下的蠕变宏细观力学模型. 裂纹成核损伤时间演化路径函数通过岩石内部裂纹成核损伤突变大小$\Delta D_{CN}$及相邻裂纹成核损伤时间差$\Delta t$进行定义, 该函数可以结合岩石声发射监测试验数据定义的岩石损伤数据确定. 通过与试验结果对比分析验证模型的合理性. 并讨论了裂纹成核损伤大小、相邻裂纹成核损伤时间间隔、及裂纹成核数量对脆性岩蠕变裂纹长度、裂纹速率、轴向应变及应变率的影响. 该结果对于更加合理、经济、高效的深部地下工程施工及设计提供了一定的理论支持.
    Abstract: The creep behaviours influenced by the growth, coalescence and nucleation of microcracks in brittle rocks have an essential meaning for evaluating the microseismicity and rock bursts of the surrounding rocks in deep underground engineering. However, the micro-macro mechanisms of the damage catastrophe from the crack nucleation effect on the total creep behaviour of brittle rocks are rarely studied. In this study, based on the subcritical crack growth model, the damage model relating to the crack, strain and acoustic emission events, and the function of the damage path influenced by crack nucleation, a micro-macro model is proposed to explain the effect of crack nucleation on creep of brittle rocks. The function of the damage path influenced by crack nucleation is defined by the parameters of the size of damage catastrophe (i.e., $\Delta D_{CN}$) and the time difference (i.e., $\Delta t$) between the adjacent crack nucleations. The damage and time parameters in this proposed function of the damage path can be determined by the use of the experimental data of acoustic missions. The rationality of this proposed micro-macro model is verified by comparing the experimental results. The effects of the damage catastrophe size from crack nucleation, the happened time of crack nucleation, and the number of crack nucleation on the crack length, crack velocity, axial strain, and axial strain rate are discussed during creep of brittle rocks. The suggested model provides a certain theoretical help for the more reasonable, economical, and efficient construction of deep underground engineering.
  • [1] 范庆忠, 高延法. 分级加载条件下岩石流变特性的试验研究. 岩土工程学报, 2005,27(11):38-41

    (Fan Qingzhong, Gao Yanfa. Experimental study on creep properties of rocks under stepwise loading. Chinese Journal of Geotechnical Engineering, 2005,27(11):38-41 (in Chinese))

    [2] 邓华锋, 周美玲, 李建林 等. 砂质泥岩三轴卸荷流变力学特性试验研究. 岩土力学, 2016,37(2):315-322

    (Deng Huafeng, Zhou Meiling, Li Jianlin, et al. Experimental research on unloading triaxial rheological mechanical properties of sandy mudstone. Rock and Soil Mechanics, 2016,37(2):315-322 (in Chinese))

    [3] 佘成学, 崔旋. 高孔隙水压力对岩石蠕变特性的影响. 岩石力学与工程学报, 2010,29(8):1603-1609

    (She Chengxue, Cui Xuan. Influence of high pore water pressure on creep properties of rock. Chinese Journal of Rock Mechanics and Engineering, 2010,29(8):1603-1609 (in Chinese))

    [4] 江宗斌, 姜谙男, 李宏 等. 加卸载条件下石英岩蠕变-渗流耦合规律试验研究. 岩土工程学报, 2017,39(10):1832-1841

    (Jiang Zongbin, Jiang Annan, Li Hong, et al. Creep-seepage coupling laws of quartzite under cyclic loading-unloading conditions. Chinese Journal of Geotechnical Engineering, 2017,39(10):1832-1841 (in Chinese))

    [5] 张强勇, 张龙云, 向文 等. 考虑温度效应的片麻状花岗岩三轴蠕变试验研究. 岩土力学, 2017,38(9):2507-2514

    (Zhang Qiangyong, Zhang Longyun, Xiang Wen, et al. Triaxial creep test of gneissic granite considering thermal effect. Rock and Soil Mechanics, 2017,38(9):2507-2514 (in Chinese))

    [6] 陈亮, 刘建锋, 王春萍 等. 不同温度及应力状态下北山花岗岩蠕变特征研究. 岩石力学与工程学报, 2015,34(6):1228-1235

    (Chen Liang, Liu Jianfeng, Wang Chunping, et al. Creeping behavior of beishan granite under different temperatures and stress conditions. Chinese Journal of Rock Mechanics and Engineering, 2015,34(6):1228-1235 (in Chinese))

    [7] 张明, 毕忠伟, 杨强 等. 锦屏一级水电站大理岩蠕变试验与流变模型选择. 岩石力学与工程学报, 2010,29(8):1530-1537

    (Zhang Ming, Bi Zhongwei, Yang Qiang, et al. Creep test and rheological model selection of marble of Jinping I hydropower station. Chinese Journal of Rock Mechanics and Engineering, 2010,29(8):1530-1537 (in Chinese))

    [8] 吴斐, 谢和平, 刘建锋 等. 分数阶黏弹塑性蠕变模型试验研究. 岩石力学与工程学报, 2014,33(5):964-970

    (Wu Fei, Xie Heping, Liu Jianfeng, et al. Experimental study of fractional viscoelastic- plastic creep model. Chinese Journal of Rock Mechanics and Engineering, 2014,33(5):964-970 (in Chinese))

    [9] 卢广达, 陈建兵. 基于一类非局部宏$-$微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):749-762

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):749-762 (in Chinese))

    [10] 吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021,53(2):301-329

    (Wu Jianying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):301-329 (in Chinese))

    [11] 王勃, 张阳博, 左宏 等. 压应力对压剪裂纹扩展的影响研究. 力学学报, 2019,51(3):845-851

    (Wang Bo, Zhang Yangbo, Zuo Hong, et al. Study on the influence of compressive stress on the compression shear crack propagation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):845-851 (in Chinese))

    [12] 刘迪, 周宏伟, 赵阳 等. 基于声发射特征的盐岩蠕变本构模型研究. 岩土力学, 2017,38(7), 1951-1958

    (Liu Di, Zhou Hongwei, Zhao Yang, et al. Study of creep constitutive model of rock salt based on acoustic emission characteristics. Rock and Soil Mechanics, 2017,38(7), 1951-1958 (in Chinese))

    [13] 徐子杰, 齐庆新, 李宏艳 等. 不同应力水平下大理石蠕变损伤声发射特性. 煤炭学报, 2014,39(S1):70-74

    (Xu Zijie, Qi Qingxin, Li Hongyan, et al. Marble creep damage and acoustic emission characteristics under different stress levels. Journal of China Coal Society, 2014,39(S1):70-74 (in Chinese))

    [14] 于群, 唐春安, 李连崇 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析. 岩土工程学报, 2014,36(12):2315-2322

    (Yu Qun, Tang ChunAn, Li Lianchong, et al. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Chinese Journal of Geotechnical Engineering, 2014,36(12):2315-2322 (in Chinese))

    [15] 陈炳瑞, 冯夏庭, 明华军 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆. 岩石力学与工程学报, 2012,31(3):561-569

    (Chen Bingrui, Feng Xiating, Ming Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: Immediate rockburst. Chinese Journal of Rock Mechanics and Engineering, 2012,31(3):561-569 (in Chinese))

    [16] 李晓照, 戚承志, 邵珠山. 脆性岩石局部细观裂纹成核损伤突变机理研究. 中国科学: 技术科学, 2020. doi: 10.1360/SST-2020-0185

    (Li Xiaozhao, Qi Chengzhi, Shao Zhushan. Research on mechanisms of the damage catastrophe from localized microcrack nucleation in brittle rocks. Scientia Sinica Technologica 2020. doi: 10.1360/SST-2020-0185 (in Chinese))

    [17] 李晓照, 邵珠山. 脆性岩石渐进及蠕变失效特性宏细观力学模型研究. 岩土工程学报, 2016,38(8):1391-1398

    (Li Xiaozhao, Shao Zhushan. Macro-micro mechanical model for progressive and creep failure of brittle rock. Chinese Journal of Geotechnical Engineering, 2016,38(8):1391-1398 (in Chinese))

    [18] Ashby MF, Sammis CG. The damage mechanics of brittle solids in compression. Pure Applied Geophysics, 1990,133(3):489-521
    [19] 李晓照, 戚承志, 邵珠山 等. 基于细观力学脆性岩石剪切特性演化模型研究. 岩土力学, 2019,40(4):1358-1367

    (Li Xiaozhao, Qi Chengzhi, Shao Zhushan, et al. Micromechanics-based model study of shear properties of brittle rocks. Rock and Soil Mechanics, 2019,40(4):1358-1367 (in Chinese))

    [20] 赵延林, 万文, 王卫军 等. 类岩石材料有序多裂纹体单轴压缩破断试验与翼形断裂数值模拟. 岩土工程学报, 2013,35(11):2097-2109

    (Zhao Yanlin, Wan Wen, Wang Weijun, et al. Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks. Chinese Journal of Geotechnical Engineering, 2013,35(11):2097-2109 (in Chinese))

    [21] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 2011,48:979-999
    [22] Zhou T, Zhu JB, Ju Y, et al. Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression. Engineering Fracture Mechanics, 2019,205:190-204
    [23] Liu P, Ju Y, Fu G, et al. Visualization of full-field stress evolution during 3D penetrated crack propagation through 3D printing and frozen stress techniques. Engineering Fracture Mechanics, 2020,236:107222
    [24] Feng P, Xu Y, Dai F. Effects of dynamic strain rate on the energy dissipation and fragment characteristics of cross-fissured rocks. International Journal of Rock Mechanics and Mining Sciences, 2021 138:104600
    [25] Cao RH, Cao P, Lin H, et al. Failure characteristics of jointed rock-like material containing multi-joints under a compressive-shear test: Experimental and numerical analyses. Archives of Civil and Mechanical Engineering, 2018,18(3):784-798
    [26] Atkinson BK. Subcritical crack growth in geological materials. Journal of Geophysical Research, 1984,89(B6):4077-4114
    [27] 陈忠辉, 傅宇方, 唐春安. 岩石破裂声发射过程的围压效应. 岩石力学与工程学报, 1997,16(1):65-70

    (Chen Zhonghui, Fu Yufang, Tang Chun'an. Confining pressure effect on acoustic emissions during rock failure. Chinese Journal of Rock Mechanics and Engineering, 1997,16(1):65-70 (in Chinese))

    [28] 杨永杰, 王德超, 郭明福 等. 基于三轴压缩声发射试验的岩石损伤特征研究. 岩石力学与工程学报, 2014,33(1):98-104

    (Yang Yongjie, Wang Dechao, Guo Mingfu, et al. Study of rock damage characteristics based on acoustic emission tests under triaxial compression. Chinese Journal of Rock Mechanics and Engineering, 2014,33(1):98-104 (in Chinese))

    [29] 孙金山, 陈明, 姜清辉 等. 锦屏大理岩蠕变损伤演化细观力学特征的数值模拟研究. 岩土力学, 2013,34(12):3601-3608

    (Sun Jinshan, Chen Ming, Jiang Qinghui, et al. Numerical simulation of mesomechanical characteristics of creep demage evolution for Jingping marble. Rock and Soil Mechanics, 2013,34(12):3601-3608 (in Chinese))

    [30] 秦四清, 徐锡伟, 胡平 等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索. 地球物理学报, 2010,53(4):1001-1014

    (Qin Siqing, Xu Xiwei, Hu Ping, et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction. Chinese Journal of Geophysics, 2010,53(4):1001-1014 (in Chinese))

  • 期刊类型引用(4)

    1. 张亮亮,程桦,王晓健. 基于统计规律的岩石非稳态蠕变经验模型研究. 岩石力学与工程学报. 2025(01): 164-173 . 百度学术
    2. 王体富,周宗红,宋庆友. 基于Logistic分布的岩石损伤统计模型. 有色金属(矿山部分). 2023(04): 107-113+124 . 百度学术
    3. 冯龙飞,王皓,王晓东,张权. 煤冲击破坏的微破裂演化特征及前兆识别. 岩石力学与工程学报. 2022(07): 1440-1452 . 百度学术
    4. 董文专,卢阳,黄翔. 灰岩单轴抗压损伤特性试验研究. 萍乡学院学报. 2022(03): 16-19 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  908
  • HTML全文浏览量:  116
  • PDF下载量:  161
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-11-26
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回