EI、Scopus 收录
中文核心期刊

非连续问题中单元分割的模板方法

王理想, 文龙飞, 肖桂仲, 田荣

王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. DOI: 10.6052/0459-1879-20-360
引用本文: 王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. DOI: 10.6052/0459-1879-20-360
Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. DOI: 10.6052/0459-1879-20-360
Citation: Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. DOI: 10.6052/0459-1879-20-360
王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. CSTR: 32045.14.0459-1879-20-360
引用本文: 王理想, 文龙飞, 肖桂仲, 田荣. 非连续问题中单元分割的模板方法[J]. 力学学报, 2021, 53(3): 823-836. CSTR: 32045.14.0459-1879-20-360
Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. CSTR: 32045.14.0459-1879-20-360
Citation: Wang Lixiang, Wen Longfei, Xiao Guizhong, Tian Rong. A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 823-836. CSTR: 32045.14.0459-1879-20-360

非连续问题中单元分割的模板方法

基金项目: 1) 国家重点研发计划(2016YFB0201002);国家重点研发计划(2016YFB0201004);科学挑战专题(TZ2018002)
详细信息
    作者简介:

    2) 田荣, 研究员, 主要研究方向: 计算力学与高性能计算. E-mail: tian_rong@iapcm.ac.cn

    通讯作者:

    田荣

  • 中图分类号: TB115,O346.1

A TEMPLATED METHOD FOR PARTITIONING OF SOLID ELEMENTS IN DISCONTINUOUS PROBLEMS

  • 摘要: 扩展有限元法 (extended finite element method, XFEM) 因具有裂纹几何独立于模拟网格、裂纹扩展时无需网格重分重映、计算精度高等优点,成为裂纹分析的主流数值方法之一. 但该方法在工程实践中存在单元被裂纹分割的几何困难 —— 现有精确几何分割方法实现复杂、计算量大、鲁棒性差. 为克服这一困难, 本文提出一种基于单元水平集的模板分割方法, 用于非连续单元子剖分和数值积分. 首先, 遍历单元水平集值所有形态并建立标准单元分割模板库; 然后, 根据单元水平集值, 对非标准单元进行形态查询和模板插值; 最后, 套用标准单元分割模板实现单元高效分割和子剖分. 将该方法与常规XFEM、改进型XFEM进行结合,从而应用于孔洞、夹杂、裂纹等非连续问题分析中. 算例分析表明, 本文提出的模板分割方法具有较高计算精度. 由于不引入复杂几何操作, 该模板分割方法同时具有较高计算效率和鲁棒性, 故可为XFEM类方法在实际工程应用中提供有效支撑.
    Abstract: The extended finite element method (XFEM) has been one of the privileged tools for crack analysis due to its significant advantages: (1) Independence of crack geometry on the simulation mesh; (2) no necessity of remeshing when a crack grows; and (3) high accuracy. However, the method is hindered in engineering practices by the partitioning difficulty of discontinuous elements, i.e. the geometric interaction between discontinuous interfaces and solid elements. Though current partitioning algorithms are geometrically exact, they are cumbersome to implement, computationally expensive, and insufficiently robust. To overcome these issues, a templated partitioning algorithm is proposed based on element level sets for subdivision and numerical integration of discontinuous elements. Firstly, a templated partitioning library for standard discontinuous elements is established by enumerating all the patterns of element level set values. Secondly, the pattern of a non-standard element to be partitioned is looked up and the sub-coordinates are interpolated based on the element level set values. Lastly, the non-standard element is efficiently partitioned into sub-triangles based on the standard element template. The algorithm is incorporated into the conventional XFEM and the improved XFEM for analysis of discontinuous problems, i.e. the problems with holes, inclusions, cracks and so forth. Numerical examples indicate that the proposed algorithm achieves favorable accuracy. Without cumbersome geometrical operations, the templated partitioning algorithm is also efficient and robust, thereby enabling itself to support the extended finite element methods in practical engineering problems.
  • [1] 王勃, 张阳博, 左宏, 等. 压应力对压剪裂纹扩展的影响研究. 力学学报, 2019,51(3):845-851

    (Wang Bo, Zhang Yangbo, Zuo Hong, et al. Study on the influence of compressive stress on the compression shear crack propagation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):845-851 (in Chinese))

    [2] 卢广达, 陈建兵. 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):749-762

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):749-762 (in Chinese))

    [3] 郭树起. 应用边界积分法求圆形夹杂问题的解析解. 力学学报, 2020,52(1):73-81

    (Guo Shuqi. Exact solution of circular inclusion problems by a boundary integral method. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):73-81 (in Chinese))

    [4] 李聪, 牛忠荣, 胡宗军, 等. 三维切口/裂纹结构的扩展边界元法分析. 力学学报, 2020,52(5):1394-1408

    (Li Cong, Niu Zhongrong, Hu Zongjun, et al. Analysis of 3-D notched/cracked structures by using extended boundary element method. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1394-1408 (in Chinese))

    [5] 王理想, 唐德泓, 李世海, 等. 基于混合方法的二维水力压裂数值模拟. 力学学报, 2015,47(6):973-983

    (Wang Lixiang, Tang Dehong, Li Shihai, et al. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):973-983 (in Chinese))

    [6] Liu CQ, Prévost JH, Sukumar N. Modeling branched and intersecting faults in reservoir-geomechanics models with the extended finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2019,43(12):2075-2089
    [7] Gordeliy E, Abbas S, Peirce A. Modeling nonplanar hydraulic fracture propagation using the XFEM: An implicit level-set algorithm and fracture tip asymptotics. International Journal of Solids and Structures, 2019,159:135-155
    [8] Liu H, Yang XG, Li SL, et al. A numerical approach to simulate 3D crack propagation in turbine blades. International Journal of Mechanical Sciences, 2020,171:105408
    [9] Babuska I, Melenk JM. The partition of unity method. International Journal for Numerical Methods in Engineering, 1997,40(4):727-758
    [10] Melenk JM, Babuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996,139(1-4):289-314
    [11] Strouboulis T, Babuska I, Copps K. The design and analysis of the Generalized Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2000,181(1-3):43-69
    [12] Duarte CA, Babuska I, Oden JT. Generalized finite element methods for three-dimensional structural mechanics problems. Computers and Structures, 2000,77(2):215-232
    [13] Strouboulis T, Copps K, Babuska I. The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2001,190(32-33):4081-4193
    [14] Tian R. Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics and Engineering, 2013,266:1-22
    [15] 田荣. C$^{1}$连续型广义有限元格式. 力学学报, 2019,51(1):263-277

    (Tian Rong. A GFEM with C$^{1}$ continuity. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):263-277 (in Chinese))

    [16] Shi GH. Manifold method of material analysis// Transactions of the 9th Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, 1991: 57-76
    [17] 徐栋栋, 郑宏, 杨永涛, 等. 多裂纹扩展的数值流形法. 力学学报, 2015,47(3):471-481

    (Xu Dongdong, Zheng Hong, Yang Yongtao, et al. Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):471-481 (in Chinese))

    [18] 刘登学, 张友良, 刘高敏. 基于适合分析T样条的高阶数值流形方法. 力学学报, 2017,49(1):212-222

    (Liu Dengxue, Zhang Youliang, Liu Gaomin. Higher-order numerical manifold method based on analysis-suitable T-spline. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):212-222 (in Chinese))

    [19] Zhang HH, Liu SM, Han SY, et al. Computation of T-stresses for multiple-branched and intersecting cracks with the numerical manifold method. Engineering Analysis with Boundary Elements, 2019,107:149-158
    [20] Hu MS, Rutqvist J. Numerical manifold method modeling of coupled processes in fractured geological media at multiple scales. Journal of Rock Mechanics and Geotechnical Engineering, 2020,12(4):667-681
    [21] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999,45(5):601-620
    [22] Mo?s N, Dolbow J. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999,46(1):131-150
    [23] Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 2009,17(4):043001
    [24] Fries TP, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010,84(3):253-304
    [25] Saxby BA, Hazel AL. Improving the modified XFEM for optimal high-order approximation. International Journal for Numerical Methods in Engineering, 2020,121(3):411-433
    [26] Tian R, Wen LF. Improved XFEM —— An extra-dof free, well-conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 2015,285:639-658
    [27] Wen LF, Tian R. Improved XFEM: Accurate and robust dynamic crack growth simulation. Computer Methods in Applied Mechanics and Engineering, 2016,308:256-285
    [28] 田荣, 文龙飞. 改进型XFEM综述. 计算力学学报, 2016,33(4):469-477

    (Tian Rong, Wen Longfei. Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016,33(4):469-477 (in Chinese))

    [29] 文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610

    (Wen Longfei, Wang Lixiang, Tian Rong. Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))

    [30] 王理想, 文龙飞, 王景焘, 等. 基于改进型XFEM的裂纹分析并行软件实现. 中国科学: 技术科学, 2018,48(11):1241-1258

    (Wang Lixiang, Wen Longfei, Wang Jingtao, et al. Implementations of parallel software for crack analyses based on the improved XFEM. Scientia Sinica Technologica, 2018,48(11):1241-1258 (in Chinese))

    [31] Tian R, Wen LF, Wang LX. Three-dimensional improved XFEM (IXFEM) for static crack problems. Computer Methods in Applied Mechanics and Engineering, 2019,343:339-367
    [32] 余天堂. 扩展有限单元法 — 理论、应用及程序. 北京: 科学出版社, 2014

    (Yu Tiantang. The Extended Finite Element Method—Theory, Application and Program. Beijing: Science Press, 2014 (in Chinese))

    [33] Khoei AR. Extended Finite Element Method: Theory and Applications. John Wiley & Sons, 2015
    [34] 庄茁, 柳占立, 成斌斌, 等. 扩展有限元法. 北京: 清华大学出版社, 2012

    (Zhuang Zhuo, Liu Zhanli, Cheng Binbin, et al. The Extended Finite Element Method. Beijing: Tsinghua University Press, 2012 (in Chinese))

    [35] Prabel B, Combescure A, Gravouil A, et al. Level set X-FEM non-matching meshes: Application to dynamic crack propagation in elastic-plastic media. International Journal for Numerical Methods in Engineering, 2007,69(8):1553-1569
    [36] Kudela L, Zander N, Kollmannsberger S, et al. Smart octrees: Accurately integrating discontinuous functions in 3D. Computer Methods in Applied Mechanics and Engineering, 2016,306:406-426
    [37] Scholz F, Jüttler B. Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces. Computer Methods in Applied Mechanics and Engineering, 2019,357:112577
    [38] 余天堂. 扩展有限元法的数值方面. 岩土力学, 2007,28(增):305-310

    (Yu Tiantang. Numerical aspects of the extended finite element method. Rock and Soil Mechanics, 2007,28(Supp):305-310 (in Chinese))

    [39] 江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究. 力学学报, 2012,44(6):1005-1015

    (Jiang Shouyan, Du Chengbin. Study on numerical precision of extended finite element methods for modeling weak discontinuities. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(6):1005-1015 (in Chinese))

    [40] Mousavi SE, Sukumar N. Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2010,199(49-52):3237-3249
    [41] Joulaian M, Hubrich S, Düster A. Numerical integration of discontinuities on arbitrary domains based on moment fitting. Computational Mechanics, 2016,57:979-999
    [42] Bui HG, Schillinger D, Meschke G. Efficient cut-cell quadrature based on moment fitting for materially nonlinear analysis. Computer Methods in Applied Mechanics and Engineering, 2020,366:113050
    [43] Ventura G. On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 2006,66(5):761-795
    [44] Abedian A, Düster A. Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods. Computer Methods in Applied Mechanics and Engineering, 2019,343:690-720
    [45] Sudhakar Y, Wall WA. Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Computer Methods in Applied Mechanics and Engineering, 2013,258:39-54
    [46] Mousavi SE, Sukumar N. Generalized Duffy transformation for integrating vertex singularities. Computational Mechanics, 2010,45:127-140
    [47] Lv JH, Jiao YY, Rabczuk T, et al. A general algorithm for numerical integration of three-dimensional crack singularities in PU-based numerical methods. Computer Methods in Applied Mechanics and Engineering, 2020,363:112908
    [48] Cui T, Leng W, Liu HQ, et al. High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Transactions on Mathematical Software, 2020,46(1):1-18
    [49] Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge: Cambridge University Press, 1999
    [50] Mo?s N, et al. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 2003,192(28-30):3163-3177
    [51] Fries TP. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008,75(5):503-532
    [52] Belytschko T, Organ D, Krongauz Y. A coupled finite element -- element-free Galerkin method. Computational Mechanics, 1995,17:186-195
    [53] Rice JR. A path independent and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968,35(2):379-386
    [54] Li FZ, Shih CF, Needleman A. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 1985,21(2):405-421
    [55] Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963,85(4):519-525
    [56] Tada H, Paris PC, Irwin R. The Stress Analysis of Cracks (Handbook). Del Research Corporation, Hellertown, Pennsylvania, 1973
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  275
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回