EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中高压脉动气泡与浮体流固耦合特性研究

胡振宇 曹卓尔 李帅 张阿漫

胡振宇, 曹卓尔, 李帅, 张阿漫. 水中高压脉动气泡与浮体流固耦合特性研究[J]. 力学学报, 2021, 53(4): 944-961. doi: 10.6052/0459-1879-20-357
引用本文: 胡振宇, 曹卓尔, 李帅, 张阿漫. 水中高压脉动气泡与浮体流固耦合特性研究[J]. 力学学报, 2021, 53(4): 944-961. doi: 10.6052/0459-1879-20-357
Hu Zhenyu, Cao Zhuoer, Li Shuai, Zhang Aman. FLUID-STRUCTURE INTERACTION BETWEEN A HIGH-PRESSURE PULSATING BUBBLE AND A FLOATING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 944-961. doi: 10.6052/0459-1879-20-357
Citation: Hu Zhenyu, Cao Zhuoer, Li Shuai, Zhang Aman. FLUID-STRUCTURE INTERACTION BETWEEN A HIGH-PRESSURE PULSATING BUBBLE AND A FLOATING STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 944-961. doi: 10.6052/0459-1879-20-357

水中高压脉动气泡与浮体流固耦合特性研究

doi: 10.6052/0459-1879-20-357
基金项目: 1)国家自然科学基金(51709056);国家自然科学基金(51979049);中央高校基本业务费(3072020CFJ0105);黑龙江省博士后科研启动金(LBH-Q20016)
详细信息
    作者简介:

    2)李帅, 副教授, 主要研究方向: 气泡动力学, 流固耦合动力学. E-mail: lishuai@hrbeu.edu.cn

    通讯作者:

    李帅

  • 中图分类号: O35

FLUID-STRUCTURE INTERACTION BETWEEN A HIGH-PRESSURE PULSATING BUBBLE AND A FLOATING STRUCTURE

  • 摘要: 本文针对水中放电气泡与水面浮体流固耦合作用开展实验和数值研究, 采用边界积分法对气泡运动进行数值模拟, 利用辅助函数法提高非线性流固耦合问题的计算精度, 同时运用双节点法保证气-液-固三相交界线的计算稳定性. 实验中, 采用水下放电技术生成气泡, 使用高速摄影捕捉气泡动力学行为与浮体运动响应. 首先对比数值与实验结果, 二者吻合良好, 验证了数值计算模型的有效性和正确性. 然后通过对气泡与浮体的无量纲距离$\gamma_{s} $ (气泡最大半径为特征长度)进行系统研究发现: (1) $\gamma_{s} $从0.2增大至2时, 气泡在坍塌阶段分别形成了颈缩型环状射流($0.2\leqslant \gamma_{s} \leqslant 0.3)$、接触射流($0.4\leqslant \gamma_{s} \leqslant 0.6)$、非接触射流($0.7\leqslant \gamma _{s} \leqslant 1)$、对射流($1.1\leqslant \gamma_{s} \leqslant 1.3)$和反射流($1.4\leqslant \gamma_{s} \leqslant 2)$等5种典型射流模式; (2)正射流速度随$\gamma_{s} $先增大后减小再增大, 并且当$0.7\leqslant \gamma_{s} \leqslant 0.9$时, 速度可达约1000 m/s; 反射流速度随$\gamma_{s} $增大而增大; (3)在本文实验条件下, $\gamma_{s} <1.5$时浮体对气泡的Bjerknes吸引力强于自由液面的Bjerknes排斥力导致气泡在坍塌阶段向浮体迁移; 当$\gamma_{s} \geqslant 1.5$时自由液面对气泡的排斥作用更强, 气泡在坍塌阶段远离自由液面.

     

  • [1] Li SM, Zhang AM, Wang QX, et al. The jet characteristics of bubbles near mixed boundaries. Physics of Fluids, 2019,31:107105
    [2] Rungsiyaphornrat S, Klaseboer E, Khoo BC, et al. The merging of two gaseous bubbles with an application to underwater explosions. Computers & Fluids, 2003,32:1049-1074
    [3] 黄彪, 王国玉, 王复峰 等. 非定常空化流场结构的实验研究. 实验力学, 2011,26(4):417-424

    (Huang Biao, Wang Guoyu, Wang Fufeng, et al. Experimental investigation on flow field structure of unsteady cavitation flow. Journal of Experimental Mechanics, 2011,26(4):417-424 (in Chinese))
    [4] 季斌, 程怀玉, 黄彪 等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:201906

    (Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:201906 (in Chinese))
    [5] Song WD, Hong MH, Lukyanchuk B, et al. Laser-induced cavitation bubbles for cleaning of solid surfaces. Journal of Applied Physics, 2004,95:2952-2956
    [6] Graaf KLd, Brandner PA, Penesis I. The pressure field generated by a seismic airgun. Experimental Thermal and Fluid Science, 2014,55:239-249
    [7] Li S, van der Meer D, Zhang AM, et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features. International Journal of Multiphase Flow, 2020,122:103143
    [8] Ohl CD, Arora M, lkink R, et al. Sonoporation from jetting cavitation bubbles. Biophysical Journal, 2006,91:4285-4295
    [9] Curtiss GA, Leppinen DM, Wang QX, et al. Ultrasonic cavitation near a tissue layer. Journal of Fluid Mechanics, 2013,730:245-272
    [10] Lord Rayleigh. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917,34:94-98
    [11] Benjamin TB, Ellis AT. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries . Philosophical Transactions for the Royal Society of London Series A, Mathematical and Physical Sciences, 1966,260:221-240
    [12] 孙姣, 周维, 蔡润泽 等. 垂直壁面附近上升单气泡的弹跳动力学研究. 力学学报, 2020,52(1):1-11

    (Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):1-11 (in Chinese))
    [13] Pearson A, Cox E, Blake JR, et al. Bubble interactions near a free surface. Engineering Analysis with Boundary Elements, 2004,28(4):295-313
    [14] 郭文璐, 李泓辰, 王静竹 等. 单空泡与自由液面相互作用规律研究进展. 力学学报, 2019,51(6):1682-1698

    (Guo Wenlu, Li Hongchen, Wang Jingzhu, et al. Reaserch progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1682-1698 (in Chinese))
    [15] Herring C. Theory of the Pulsations of the Gas Bubble Produced by an Underwater Explosion. Columbia Univ., Division of National Defense Research, 1941
    [16] Keller JB, Kolodner II. Damping of underwater explosion bubble oscillations. Journal of Applied Physics, 1956,27(10):1152-1161
    [17] Li S, Zhang AM, Han R, et al. Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission. Ocean Engineering, 2019,190:106414
    [18] 张阿漫, 王诗平, 彭玉祥 等. 水下爆炸与舰船毁伤研究进展. 中国舰船研究, 2019,14(3):1-13

    (Zhang Aman, Wang Shiping, Peng Yuxiang, et al. Research progress in underwater explosion and its damage to ship structures. Chinese Journal of Ship Research, 2019,14(3):1-13 (in Chinese))
    [19] Brett JM, Krelle A. A study of bubble collapse pressure pulse waves from small scale underwater explosions near the water surface. Journal of Sound and Vibration, 2018,435:91-103
    [20] Zhang S, Wang SP, Zhang AM. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator. Physics of Fluids, 2016,28(3):032109
    [21] 张阿漫, 王诗平, 白兆宏 等. 不同环境下气泡脉动特性实验研究. 力学学报, 2011,43(1):71-83

    (Zhang Aman, Wang Shiping, Bai Zhaohong, et al. Experimental study on bubble pulse features under different circumstances. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(1):71-83 (in Chinese))
    [22] Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 2003,479:327-348
    [23] Brujan EA, Noda T, Ishigami A, et al. Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. Journal of Fluid Mechanics, 2018,841:28-49
    [24] Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. Journal of Fluid Mechanics, 1975,72:391-399
    [25] Brujan EA, Takahira H, Ogasawara T. Planar jets in collapsing cavitation bubbles. Experimental Thermal and Fluid Science, 2019,101:48-61
    [26] Chahine GL, Kalumuck KM, Hsiao CT. Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DYNAFS, a three-dimensional BEM code. Computational Mechanics, 2003,32:319-326
    [27] Klaseboer E, Khoo BC, Hung KC. Dynamics of an oscillating bubble near a floating structure. Journal of Fluids and Structures, 2005,21(4):395-412
    [28] Klaseboer E, Hung KC, Wang C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. Journal of Fluid Mechanics, 2005,537:387-413
    [29] Zong Z, Wang J, Zhou L, et al. Fully nonlinear 3D interaction of bubble dynamics and a submerged or floating structure. Applied Ocean Research, 2015,53:236-249
    [30] Li S, Zhang AM, Han R, et al. 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere. Journal of Computational Physics, 2019,392:713-731
    [31] Li S, Khoo BC, Zhang AM, et al. Bubble-sphere interaction beneath a free surface. Ocean Engineering, 2018,169:469-483
    [32] Zeng Q, Gonzalez-Avila SR, Ohl C-D. Splitting and jetting of cavitation bubbles in thin gaps. Journal of Fluid Mechanics, 2020,896:A28
    [33] Liu YL, Zhang AM, Tian ZL, et al. Investigation of free-field underwater explosion with Eulerian finite element method. Ocean Engineering, 2018,166:182-190
    [34] Wang QX, Yeo KS, Khoo BC, et al. Nonlinear interaction between gas bubble and free surface. Computers & Fluids, 1996,25(7):607-628
    [35] Wang QX, Yeo KS, Khoo BC, et al. Strong interaction between a buoyancy bubble and a free surface. Theoretical and Computational Fluid Dynamics, 1996,8:73-88
    [36] 李帅, 张阿漫, 韩蕊. 气泡多周期运动时引起的流场压力与速度. 力学学报, 2014,46(4):533-543

    (Li Shuai, Zhang Aman, Han Rui. Numerical analysis on the velocity and pressure fields induced by multi-oscillations of an underwater explosion bubble. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(4):533-543 (in Chinese))
    [37] Best JP, Kucera A. A numerical investigation of non-spherical rebounding bubbles. Journal of Fluid Mechanics, 1992,245:137-154
    [38] Li S, Han R, Zhang AM. Nonlinear interaction between a gas bubble and a suspended sphere. Journal of Fluids and Structures, 2016,65:333-354
    [39] Zhang AM, Liu YL. Improved three-dimensional bubble dynamics model based on boundary element method. Journal of Computational Physics, 2015,294:208-223
    [40] Ni BY, Zhang AM, Wu GX. Numerical and experimental study of bubble impact on a solid wall. Journal of Fluids engineering, 2015,137(3):031206
    [41] Wang QX, Liu WK, Zhang AM, et al. Bubble dynamics in a compressible liquid in contact with a rigid boundary. Interface Focus, 2015,5(5):20150048
    [42] Turangan CK, Ong GP, Klaseboer E, et al. Experimental and numerical study of transient bubble-elastic membrane interaction. Journal of Applied Physics, 2006,100(5):054910
    [43] 李帅, 张阿漫, 韩蕊. 水中高压脉动气泡水射流形成机理及载荷特性研究. 力学学报, 2019,51(6):1666-1681

    (Li Shuai, Zhang Aman, Han Rui. The mechanism of jetting behaviors of an oscillating bubble. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1666-1681 (in Chinese))
    [44] Cui P, Zhang AM, Wang SP, et al. Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 2018,841:287-309
    [45] Lauterborn W. Cavitation bubble dynamics - new tools for an intricate problem. Applied Scientific Research, 1982, (38):165-178
    [46] Blake JR, Taib BB, Doherty G. Transient cavities near boundaries. Part 1. Rigid boundary. Journal of Fluid Mechanics, 1986,170:479-497
    [47] Blake JR. The Kelvin impulse: application to cavitation bubble dynamics. The Journal of the Australian Mathematical Society Series B Applied Mathematics, 1998,30(2):127-146
    [48] Blake JR, Gibson DC. Growth and collapse of a vapour cavity near a free surface. Journal of Fluid Mechanics, 1981,111:123-140
    [49] Robinson PB, Blake JR, Kodama T, et al. Interaction of cavitation bubbles with a free surface. Journal of Applied Physics, 2001,89(12):8225-8237
    [50] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998,361:75-116
    [51] Lechner C, Lauterborn W, Koch M, et al. Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: A numerical study. Physical Review Fluids, 2019,4:021601
  • 加载中
计量
  • 文章访问数:  705
  • HTML全文浏览量:  50
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16

目录

    /

    返回文章
    返回