EI、Scopus 收录
中文核心期刊

探测器对超音速刚性盘-缝-带型降落伞系统的影响

龚升, 吴锤结

龚升, 吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响[J]. 力学学报, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339
引用本文: 龚升, 吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响[J]. 力学学报, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339
Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339
Citation: Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. DOI: 10.6052/0459-1879-20-339
龚升, 吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响[J]. 力学学报, 2021, 53(3): 890-901. CSTR: 32045.14.0459-1879-20-339
引用本文: 龚升, 吴锤结. 探测器对超音速刚性盘-缝-带型降落伞系统的影响[J]. 力学学报, 2021, 53(3): 890-901. CSTR: 32045.14.0459-1879-20-339
Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. CSTR: 32045.14.0459-1879-20-339
Citation: Gong Sheng, Wu Chuijie. INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 890-901. CSTR: 32045.14.0459-1879-20-339

探测器对超音速刚性盘-缝-带型降落伞系统的影响

基金项目: 1) 国家自然科学基金(11372068);国家重点基础研究发展计划(2014CB744104)
详细信息
    作者简介:

    2) 吴锤结, 教授, 主要研究方向: 计算流体力学、湍流与非线性动力学、涡动力学和流动控制. E-mail: cjwudut@dlut.edu.cn

    通讯作者:

    吴锤结

  • 中图分类号: V211.3

INFLUENCE OF THE CAPSULE ON THE SUPERSONIC RIGID DISK-GAP-BAND PARACHUTE SYSTEM

  • 摘要: 研究了流体初始马赫数为 2.0 时, 探测器的存在与否对刚性盘-缝-带型降落伞系统气动减速性能以及流场流体结构特性的影响. 对于非定常可压缩流体的数值模拟, 流场采用了三层块结构自适应网格加密技术, 配合混合形式的TCD (tuned center difference)和WENO (weighted essentially non-oscillatory)计算格式以及基于拉伸涡亚格子模型的大涡模拟方法来处理超音速流中的激波以及大尺度湍流旋涡结构等. 结果表明: 无探测器时, 降落伞系统的流场结构稳定, 扰动较小; 有探测器存在时, 探测器后端的湍流尾迹和伞衣内部逆向运动溢出的流体与伞衣前端的弓形激波周期性的相互作用, 使得激波位置发生前移、激波倾角变小, 伞衣内部流场难以达到平衡稳定状态. 这加剧了降落伞系统的气动阻力振荡脉动变化, 降低了降落伞系统气动阻力系数, 同时也使得降落伞系统流场尾迹结构更加复杂.
    Abstract: The influence of aerodynamic deceleration performances and flow features of the rigid disk-gap-band parachute system at Mach 2.0 with/without the capsule was studied. For the numerical simulation of unsteady compressible fluid, it adopted the three-layer block-structured adaptive mesh refinement, and a hybrid TCD (tuned center difference) and WENO (weighted essentially non-oscillatory) algorithm and the large-eddy simulation method with the stretched-vortex sub-grid model were used to process the shock waves and large scale turbulence vortex in supersonic flow. The results show that, the flow structure of the parachute system is stable and the disturbance is small without the capsule; when the capsule exists, the periodic interaction between the turbulent wake behind the capsule and the reverse fluid from the inside of the canopy and the parachute shock wave, makes the position of the shock wave move forward and the angle of it become smaller. The flow flied inside the canopy is difficult to reach a stable state, which intensifies the aerodynamic drag oscillation of the parachute system. The aerodynamic drag coefficient of the parachute system is reduced, and the wake structure of the parachute system is more complicated.
  • [1] 林杨挺, 胡森, 张建超, 等. 火星陨石有机碳的纳米离子探针分析:生物或非生物成因? 中国矿物岩石地球化学学会学术年会, 2013

    (Lin Yangting, Hu Sen, Zhang Jianchao, et al. Nano-ion probe analysis of organic carbon from Martian meteorites: biological or non-biological origin? Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, 2013 (in Chinese))

    [2] 王利荣. 降落伞理论与应用:生物或非生物成因? 北京: 宇航工业出版社, 1997

    (Wang Lirong. Parachute Theory and Application Beijing: Aerospace Industry Press, 1997 (in Chinese))

    [3] Jin ZY, Pasqualini S, Qin B. Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy. Acta Mechanica Sinica, 2014(3):361-369
    [4] Peterson CW, Strickland JH, Higuchi H. The fluid dynamics of parachute inflation. Annual Review of Fluid Mechanics, 1961,28(1):361-387
    [5] Bayle O, Lorenzoni L, Blancquaert T, et al. Exomars entry descent and landing demonstrator mission and design overview. European Space Agency, 2015
    [6] Sengupta A, Witkowski A, Rowan J, et al. An overview of the Mars Science Laboratory Parachute Decelerator System// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, IEEE, 2007
    [7] 余莉, 李水生, 明晓. 降落伞弹性现象对伞衣载荷的影响. 宇航学报, 2008,29(1):381-385

    (Yu Li, Li Shuisheng, Ming Xiao. Influence of the parachute elastic behavier on the canopy payload. Journal of Astronautics, 2008,29(1):381-385 (in Chinese))

    [8] Rabinovitch J, Huang DZ, Borker R, et al. Towards a validated FSI computational framework for supersonic parachute deployments// AIAA Aviation 2019 Forum, 2019
    [9] Xue XP, Koyama H, Nakamura Y. Numerical simulation on supersonic aerodynamic interference for rigid and flexible parachutes// AIAA Fluid Dynamics Conference and Exhibit, 2013
    [10] O'Farrell C, Muppidi S, Brock JM. Development of models for disk-gap-band parachutes deployed supersonically in the wake of a slender body//2017 IEEE Aerospace Conference. IEEE, 2017
    [11] Xue XP, Koyama H, Nakamura Y, et al. Effects of suspension line on flow field around a supersonic parachute. Aerospace Science and Technology, 2015,43:63-70
    [12] 贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究. 航天返回与遥感, 2019,40(6):26-34

    (Jia He, Jiang Lulu, Xue Xiaopeng, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes. Spacecraft Recovery and Remote Sensing, 2019,40(6):26-34 (in Chinese))

    [13] 戴刚, 薛晓鹏. 超声速条件下伞盘模型的气动干扰数值研究. 航天返回与遥感, 2018,39(06):15-23

    (Dai Gang, Xue Xiaopeng. Numerical simulation of aerodynamic interaction of canopy disk models under supersonic conditions. Spacecraft Recovery and Remote Sensing, 2018,39(6):15-23 (in Chinese))

    [14] Karagiozis K, Kamakoti R, Cirak F, et al. A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane. Journal of Fluids and Structures, 2011,27(2):175-192
    [15] Yang X, Yu L, Liu M, et al. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method. Chinese Journal of Aeronautics, 2020,33(6):1692-1702
    [16] Dahal N, Fukiba K, Mizuta K, et al. Study of pressure oscillations in supersonic parachute. International Journal of Aeronautical and Space Sciences, 2018,19:24-31
    [17] Yang X, Yu L, Zhao XS. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation. Engineering Computations, 2018,35(1):157-168
    [18] Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing// AIAA Sci-Tech 2020 Forum, 2020
    [19] Yang X, Yu L, Nie S, et al. Aerodynamic performance of the supersonic parachute with material permeability. Journal of Industrial Textiles, 2019,50(6):812-829
    [20] Johari H, Desabrais KJ. Vortex shedding in the near wake of a parachute canopy. Journal of Fluid Mechanics, 2005,536:185-207
    [21] Barnhardt M, Drayna T, Nompelis I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2007
    [22] Blazek J. Computational Fluid Dynamic Principles and Application. USA: Elsevier, 2015
    [23] 阎超. 计算流体动力学方法与应用. 北京: 北京航空航天大学出版社, 2006

    (Yan Chao. Computational Fluid Dynamics Methods and Applications. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006 (in Chinese))

    [24] 时北极, 何国威, 王士召. 基于滑移速度壁模型的复杂边界湍流大涡模拟. 力学学报, 2019,51(3):754-766

    (Shi Beiji, He Guowei, Wang Shizhao. Large-eddy simulation of flow with complex geometries by using the slip-wall model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):754-766 (in Chinese))

    [25] 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报, 2020,52(5):1314-1322

    (Chen Linfeng. A residual-based unresolved-scale finite element modelling for implicit large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1314-1322 (in Chinese))

    [26] 谢晨月, 袁泽龙, 王建春, 等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021,53(1):1-16

    (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):1-16 (in Chinese))

    [27] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论与应用. 北京: 清华大学出版社, 2014

    (Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Application of Numerical Simulation of Turbulent Large Eddy. Beijing: Tsinghua University Press, 2014 (in Chinese))

    [28] Hill DJ, Pantano C, Pullin DI. Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock. Journal of Fluid Mechanics, 2006,557:29-61
    [29] Kosovi$acute{c}$ B, Pullin DI, Samtaney R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence. Physics of Fluids, 2002,14(4):1511-1522
    [30] Misra A, Pullin DI. A vortex-based subgrid stress model for large-eddy simulation. Physics of Fluids, 1997,9(8):2443-2454
    [31] Lundgren TS. Strained spiral vortex model for turbulent fine structure. Physics of Fluids, 1982,25(12):2193-2203
    [32] Voelkl T, Pullin DI, Chan DC. A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Physics of Fluids, 2001,12(7):1810-1825
    [33] Pullin DI. A vortex-based model for the subgrid flux of a passive scalar. Physics of Fluids, 2000,12(9):2311-2319
    [34] Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 2002,178(1):81-117
    [35] Hill DJ, Pullin DI. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. Journal of Computational Physics, 2004,194(2):435-450
    [36] 龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究. 应用数学和力学, 2021,42(3):233-247

    (Gong Sheng, Wu Chuijie. Large-eddy simulation study of the supersonic capsule/rigid disk-gap-band parachute system. Applied Mathematics and Mechanics, 2021,42(3):233-247 (in Chinese))

计量
  • 文章访问数:  1241
  • HTML全文浏览量:  320
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-26
  • 刊出日期:  2021-03-09

目录

    /

    返回文章
    返回