EI、Scopus 收录
中文核心期刊

基于李群局部标架的多柔体系统动力学建模与计算

刘铖, 胡海岩

刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J]. 力学学报, 2021, 53(1): 213-233. DOI: 10.6052/0459-1879-20-292
引用本文: 刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J]. 力学学报, 2021, 53(1): 213-233. DOI: 10.6052/0459-1879-20-292
Liu Cheng, Hu Haiyan. DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. DOI: 10.6052/0459-1879-20-292
Citation: Liu Cheng, Hu Haiyan. DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. DOI: 10.6052/0459-1879-20-292
刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J]. 力学学报, 2021, 53(1): 213-233. CSTR: 32045.14.0459-1879-20-292
引用本文: 刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J]. 力学学报, 2021, 53(1): 213-233. CSTR: 32045.14.0459-1879-20-292
Liu Cheng, Hu Haiyan. DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. CSTR: 32045.14.0459-1879-20-292
Citation: Liu Cheng, Hu Haiyan. DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. CSTR: 32045.14.0459-1879-20-292

基于李群局部标架的多柔体系统动力学建模与计算

基金项目: 1)国家自然科学基金资助项目(11672034);国家自然科学基金资助项目(11832005);国家自然科学基金资助项目(12072026)
详细信息
    作者简介:

    2)刘铖,副教授,主要研究方向:柔性多体系统动力学建模与计算;非线性有限元方法等. E-mail: liucheng_bit@aliyun.com

    通讯作者:

    刘铖

  • 中图分类号: O313.7

DYNAMIC MODELING AND COMPUTATION FOR FLEXIBLE MULTIBODY SYSTEMS BASED ON THE LOCAL FRAME OF LIE GROUP

  • 摘要: 多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group, LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系, 具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器, 以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.
    Abstract: The main content of the dynamics of flexible multibody systems focuses on the dynamic modeling, computation and control of complex systems composed of flexible components, which are subjected to the relative overall motion and connected by kinematical constraints. Compared with the computational structural mechanics, the multibody dynamics issues have high geometrically nonlinear, which is not only deduced by the large rotation caused from the large deformation of flexible components, but also is deduced by the overall rigid body motion. Under the concept of the local frame of Lie group (LFLG), the topic that how to develop a new modeling and computational method for flexible multibody dynamics is discussed. The major studies of this paper include the following aspects: the modelling methods of beam elements and plate/shell elements based on the LFLG, the long-time integration algorithm for the flexible multibody systems including collision problems, the parallel algorithm for multibody systems based on the domain decomposition method, and several numerical examples to verify the feasibility of the proposed method. The unique feature of the new method can eliminate the geometrically nonlinear of the overall rigid motion for flexible components. Therefore, the generalized inertial forces and internal forces as well as their Jacobian matrices are invariable under the arbitrary rigid body motion. The proposed method can motivate the integration of the modeling method of the flexible multibody dynamics and the computational structural dynamics with large deformation components and is expected to promote the development of the next-generation software of multibody system dynamics.
  • [1] Simo JC, Vu-Quoc L . On the Dynamics in space of rods undergoing large motions-a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 1988, 66 (2): 125-161
    [2] Shabana AA . An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. . Chicago: University of Illinois at Chicago, 1996
    [3] Meier C, Popp A, Wall WA . Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Archives of Computational Methods in Engineering, 2019,26(1):163-243
    [4] Gerstmayr J, Sugiyama H, Mikkola A . Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems.  Journal of Computational and Nonlinear Dynamics, 2013,8(3):031016
    [5] Romero I . A comparison of finite elements for nonlinear beams: The absolute nodal coordinate and geometrically exact formulations.  Multibody System Dynamics, 2008,20(1):51-68
    [6] Bauchau OA, Han SL, Mikkola A , et al. Comparison of the absolute nodal coordinate and geometrically exact formulations for beams.  Multibody System Dynamics, 2014,32(1):67-85
    [7] 王珍, 刘铖 . 几何精确方法与绝对节点坐标方法对比研究//第十届全国多体动力学与控制暨第五届全国航天动力学与控制学术会议, 青岛 , 2017 年9月22-25日.

    ( Wang Zhen, Liu Cheng. Comparison of the geometrically exact formulation and the absolute nodal coordinate formulation//The 10th National Conference on Multibody dynamics and Control & the 5th National Conference on Astrodynamics and Control, Qingdao, 2017-9-22-25 (in Chinese))

    [8] Reissner E . On one-dimensional finite-strain beam theory: The plane problem.  Zeitschrift F$ddot{u}$r Angewandte Mathematik und Physik Zamp, 1972,23(5):795-804
    [9] Ren H, Fan W, Zhu WD . An accurate and robust geometrically exact curved beam formulation for multibody dynamic analysis.  ASME Journal of Vibration and Acoustics, 2017,140(1):011012
    [10] Liu JP, Cheng ZB, Ren GX . An arbitrary Lagrangian--Eulerian formulation of a geometrically exact Timoshenko beam running through a tube.  Acta Mechanica, 2018,229(8):3161-3188
    [11] Cardona A , G$acute{e}$radin M. A beam finite element non-linear theory with finite rotations. International Journal for Numerical Methods in Engineering, 1988,26:2403-2438
    [12] Sonneville V, Cardona A , Br$ddot{u}$ls O. Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 2014,268:451-474
    [13] 刘铖, 胡海岩. 浅谈多体系统动力学几何非线性与转动非线性// 第十一届全国多体动力学与控制暨第六届全国航天动力学与控制和第十四届全国分析力学联合学术会议, 长沙, 2019 -09-20-23日.

    Liu Cheng, Hu Haiyan. A brief discussion on the geometrically nonlinear and rotational nonlinear of the multibody systems//The 11th National Conference on Multibody dynamics and Control & the 6th National Conference on Astrodynamics and Control & the 14th National Conference on analytical dynamics, Changsha, 2019-09-20-23 (in Chinese))

    [14] Hughes TJR, Cottrell JA, Bazilevs Y . Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005,194(39-41):4135-4195
    [15] Simo JC, Fox DD . On a stress resultant geometrically exact shell model Part I: Formulation and optimal parametrization.  Computer Methods in Applied Mechanics and Engineering, 1989,72(3):267-304
    [16] Simo JC, Rifai MS, Fox DD . On a stress resultant geometrically exact shell model Part IV: Variable thickness shells with through-the-thickness stretching.  Computer Methods in Applied Mechanics and Engineering, 1990,81(1):91-126
    [17] Simo JC, Kennedy JG . On a stress resultant geometrically exact shell model Part V: Nonlinear plasticity formulation and integration algorithms.  Computer Methods in Applied Mechanics and Engineering, 1992,96:133-171
    [18] Simo JC, Fox DD, Hughes TJR . Formulations of finite elasticity with independent rotations.  Computer Methods in Applied Mechanics and Engineering, 1992,95(2):277-288
    [19] Fox DD, Simo JC . A drill rotation formulation for geometrically exact shells.  Computer Methods in Applied Mechanics and Engineering, 1992,98(3):329-343
    [20] 潘亦甦, 陈大鹏 . 具有Drilling自由度的膜单元的杂交/混合有限元法. 西南交通大学学报, 1995,30(2):128-134.

    (Pan Yisu, Chen Dapeng . A hybrid/mixed model for membrane elements with drilling degrees of freedom. Journal of Southwest Jiaotong University, 1995,30(2):128-134 (in Chinese))

    [21] Sonneville V . A geometric local frame approach for flexible multibody systems.  Liege, Belgique: University of Liege, 2015
    [22] Shabana AA, Yakoub RY . Three-dimensional absolute nodal coordinate formulation for beam elements: Theory.  ASME Journal of Mechanical Design, 2001,123(4):606-613
    [23] Yakoub RY, Shabana AA . Three-dimensional absolute nodal coordinate formulation for beam elements implementation and applications.  ASME Journal of Mechanical Design, 2001,123:614-621
    [24] Garc$acute{i}$a De Jal'{o}n J, Bayo E . Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. New York: Springer, 1994
    [25] Bauchau OA . Flexible Multibody Dynamics. Springer Science & Business Media, 2010
    [26] Jeleni$acute{c}$ G, Cristfield MA . Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics.  Computer Methods in Applied Mechanics and Engineering, 1999,171(1):141-171
    [27] Ibrahimbegovic A, Taylor RL . On the role of frame-invariance in structural mechanics models at finite rotations.  Computer Methods in Applied Mechanics and Engineering, 2002,191(45):5159-5176
    [28] Bauchau OA, Han SL . Interpolation of rotation and motion.  Multibody System Dynamics, 2014,31(3):339-370
    [29] Patel M, Shabana AA . Locking alleviation in the large displacement analysis of beam elements: the strain split method.  Acta Mechanica, 2018,229(7):2923-2946
    [30] 刘铖, 田强, 胡海岩 . 基于绝对节点坐标的多柔体系统动力学高效计算方法. 力学学报, 2010,42(6):1197-1205.

    (Liu Cheng, Tian Qiang, Hu Haiyan . Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(6):1197-1205 (in Chinese))

    [31] Liu C, Tian Q, Hu HY . New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation.  Nonlinear Dynamics, 2012,70(3):1903-1918
    [32] Zhao ZH, Ren GX . A quaternion-based formulation of Euler--Bernoulli beam without singularity.  Nonlinear Dynamics, 2012,67(3):1825-1835
    [33] Bergou M, Wardetzky M, Robinson S , et al. Discrete elastic rods.  ACM Transactions on Graphics, 2008,27(3):459-470
    [34] Liu C, Tian Q, Hu HY . Dynamics of a large scale rigid--flexible multibody system composed of composite laminated plates.  Multibody System Dynamics, 2011,26(3):283-305
    [35] Liu C, Tian Q, Yan D , et al. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF.  Computer Methods in Applied Mechanics and Engineering, 2013,258:81-95
    [36] Hou YS, Liu C, Hu HY . Component-level proper orthogonal decomposition for flexible multibody systems.  Computer Methods in Applied Mechanics and Engineering, 2020,361:112691
    [37] Simo JC, Tarnow N, Doblare M . Nonlinear dynamic of three-dimensional rods: Exact energy and momentum conserving algorithm.  International Journal for Numerical Methods in Engineering, 1995,38(9):1431-1473
    [38] Romero I, Armero F . An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy--momentum conserving scheme in dynamics.  International Journal for Numerical Methods in Engineering, 2002,54:1683-1716
    [39] Marsden JE, West M . Discrete mechanics and variational integrators.  Acta Numerica, 2001: 357-514
    [40] Betsch P, Hesch C, Sanger N , et al. Variational integrators and energy-momentum schemes for flexible multibody dynamics.  Journal of Computational and Nonlinear Dynamics, 2010,5(3):031001
    [41] Schwarze M, Reese S . A reduced integration solid-shell finite element based on the EAS and the ANS concept-Large deformation problems.  International Journal for Numerical Methods in Engineering, 2011,85:289-329
    [42] Luo K, Liu C, Tian Q , et al. An efficient model reduction method for buckling analyses of thin shells based on IGA.  Computer Methods in Applied Mechanics and Engineering, 2016,309:243-268
    [43] Sun DW, Liu C, Hu HY . Dynamic computation of 2D segment-to-segment frictionless contact for a flexible multibody system subject to large deformation.  Mechanism and Machine Theory, 2019,140:350-376
    [44] Heyn T . On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact. [PhD Thesis]. University of Wisconsin-Madison, 2013
    [45] Lew AJ, Marsden JE, Ortiz M , et al. Asynchronous variational integrators.  Archive for Rational Mechanics and Analysis, 2003,167(2):85-146
    [46] 许焕宾, 李伟杰, 史文华 等.  一种可重复展收的桁架结构及其胞元, 中国专利, 公开号: CN105923170B, 2016 -04-26
    [47] Farhat C, Lesoinne M, Letallec P , et al. FETI-DP: a dual--primal unified FETI method-part I: A faster alternative to the two-level FETI method.  International Journal for Numerical Methods in Engineering, 2001,50(7):1523-1544
    [48] 刘铖, 叶子晟, 胡海岩 . 基于区域分解的柔性多体系统高效并行算法. 中国科学: 物理学力学天文学, 2017,47(10):12-22.

    (Liu Cheng, Ye Zisheng, Hu Haiyan . An efficient parallel algorithm for flexible multibody systems based on domain decomposition method, Scientia Sinica Physica, Mechanica and Astronomica, 2017,47(10):12-22 (in Chinese))

    [49] 李培, 马沁巍, 宋燕平  等. 大型空间环形桁架天线反射器展开动力学模拟与实验研究. 中国科学: 物理学力学天文学, 2017,47(10):3-11.

    (Li Pei, Ma Qinwei, Song Yanping , et al. Deployment dynamics simulation and ground test of a space hoop trus antenna reflector. Scientia Sinica Physica, Mechanica and Astronomica, 2017,47(10):3-11 (in Chinese))

    [50] Li P, Liu C, Tian Q , et al. Dynamics of a deployable mesh reflector of satellite antenna: Parallel computation and deployment simulation.  Journal of Computational and Nonlinear Dynamics, 2016,11(6):061005
  • 期刊类型引用(17)

    1. 祁伊凡,单明贺,田强. 空间多柔体系统缩比等效动力学建模方法研究. 中国科学:物理学 力学 天文学. 2025(02): 243-260 . 百度学术
    2. 胡海岩,田强,文浩,罗凯,马小飞. 极大空间结构在轨组装的动力学与控制. 力学进展. 2025(01): 1-29 . 百度学术
    3. 袁迪,袁卫锋. 轮-阜机构的动力学模拟. 应用力学学报. 2024(03): 659-665 . 百度学术
    4. 刘海生,张润森,张腾,刘铖. 局部标架的共旋Timoshenko梁单元多体动力学数值特性分析. 力学学报. 2024(09): 2681-2694 . 本站查看
    5. 兰靖杰,张世雄,荣吉利,刘铖. 基于deluxe FETI-DP并行算法的矩形太阳翼展开动力学高效仿真. 宇航学报. 2024(12): 1897-1909 . 百度学术
    6. 薛纭,陈立群. 弹性薄壳动力学比拟的曲面论基础. 应用数学和力学. 2023(05): 489-498 . 百度学术
    7. 彭麒安,李博,荣凯,乔喆烨,王三民. 采用绝对节点坐标法的剪式单元可展机构动力学分析. 西安交通大学学报. 2023(08): 172-181 . 百度学术
    8. 黄子恒,陈菊,张志娟,田强. 多刚体动力学仿真的李群变分积分算法. 动力学与控制学报. 2022(01): 8-17 . 百度学术
    9. 张腾,刘铖,张志娟,刘绍奎. 基于SE(3)群局部标架的5/6 Dofs CB壳单元. 力学学报. 2022(03): 746-761 . 本站查看
    10. 聂佳伟,辛鹏飞,荣吉利,王瑞,潘成龙,程修妍. 空间机械臂辅助深层采样阻抗控制策略. 宇航学报. 2022(05): 580-592 . 百度学术
    11. 沈伟清,王本亮,史东华. 开链机械臂的反馈Hamel变分积分子. 动力学与控制学报. 2022(03): 8-14 . 百度学术
    12. 董方方,喻斌,赵晓敏,陈珊. 双移动机械臂空间协作动力学建模研究. 应用数学和力学. 2022(08): 846-856 . 百度学术
    13. 顾崴,刘铖,安志朋,史东华. 一种基于Hamel形式的无条件稳定动力学积分算法. 力学学报. 2022(09): 2577-2587 . 本站查看
    14. 汤惠颖,张志娟,刘铖,刘绍奎. 两类基于局部标架梁单元的闭锁缓解方法. 力学学报. 2021(02): 482-495 . 本站查看
    15. 张大羽,罗建军,王辉,马小飞. ANCF/CRBF平面梁闭锁问题及闭锁缓解研究. 力学学报. 2021(03): 874-889 . 本站查看
    16. 李翔宇,乔栋,程潏. 三体轨道动力学研究进展. 力学学报. 2021(05): 1223-1245 . 本站查看
    17. 高山,史东华,郭永新. Hamel框架下几何精确梁的离散动量守恒律. 力学学报. 2021(06): 1712-1719 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 30
出版历程
  • 收稿日期:  2020-08-16

目录

    /

    返回文章
    返回