国家自然科学基金会. 机械工程学科发展战略报告. 北京: 科学出版社, 2010 (National Natural Science Foundation of China. Mechanical Engineering Discipline Development Strategy Report. Beijing: Science Press, 2010 (in Chinese))
|
Mura T.Micromechanics of Defects in Solids. Dordrecht: Kluwer Academic Publishers, 1982
|
Eshelby JD.Progress in solid mechanics. Journal of the Mechanics and Physics of Solids, 1961, 9(1): 67
|
Eshelby JD, Peierls RE.The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 241(1226): 376-396
|
Biao W.Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. International Journal of Solids and Structures, 1992, 29(3): 293-308
|
Wu L, Du S.The elastic field in a half-space with a circular cylindrical inclusion. Journal of Applied Mechanics, 1996, 63(4): 925-932
|
Zou W, He Q, Huang M, et al.Eshelby's problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 2010, 58(3): 346-372
|
曾祥太, 吕爱钟. 含有非圆形双孔的无限平板中应力的解析解研究. 力学学报, 2019, 51(1): 170-181 (Zeng Xiangtai, L$\ddot{u}$Aizhong. Analytical stress solution research on an infinite plate containing two non-circular holes. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 170-181(in Chinese))
|
郭树起. 应用边界积分法求圆形夹杂问题的解析解. 力学学报, 2020, 52(1): 73-81 (Guo Shuqi. Exact solution of circular inclusion problems by a boundary integral method. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81 (in Chinese))
|
李岩松, 陈寿根. 寒区非圆形隧道冻胀力的解析解. 力学学报, 2020, 52(1): 196-207 (Li Yansong, Chen Shougen. Analytical solution of frost heaving force in non-circular cold region tunnels. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207 (in Chinese))
|
Ju J, Sun L.A novel formulation for the exterior-point Eshelby's tensor of an ellipsoidal inclusion. Journal of Applied Mechanics, E1999, 66(2): 570-574
|
Jin X, Keer L, Wang Q.A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. Journal of Applied Mechanics, 2011, 78(3): 031009
|
Jin X, Lyu D, Zhang X, et al.Explicit analytical solutions for a complete set of the Eshelby tensors of an ellipsoidal inclusion. Journal of Applied Mechanics, 2016, 83(12): 121010-12
|
Jin X, Zhang X, Li P, et al.On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape. Journal of Applied Mechanics, 2017, 84(7): 074501
|
Wang P, Wang B, Wang K, et al.Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. International Journal of Engineering Science, 2019, 142: 158-169
|
Shen X, Liu X, Dong S, et al.RVE model with shape and position defects for predicting mechanical properties of 3D braided CVI-SiCf/SiC composites. Composite Structures, 2018, 195: 325-334
|
Jiang W, Xu X, Zhao Y, et al.Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite. Materials Science and Engineering: A, 2018, 721: 263-273
|
Nagaoka Y, Tan R, Li R, et al.Superstructures generated from truncated tetrahedral quantum dots. Nature, 2018, 561(7723): 378-382
|
Chiu Y.On the internal stresses in a half plane and a layer containing localized inelastic strains or inclusions. Journal of Applied Mechanics, 1980, 47(2): 313-318
|
Rodin G.Eshelby's inclusion problem for polygons and polyhedra. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 1977-1995
|
Nozaki H, Taya M.Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. Journal of Applied Mechanics-Transactions of the ASME, 1997, 64(3): 495-502
|
Ru C.Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane. Journal of Applied Mechanics-transactions of The ASME, 1999, 66(2): 315-323
|
周青华, 王家序, 王战江等.二维非均质材料应力场的数值化计算方法. 复合材料学报, 2014, 31(4): 1037-1045 (Zhou Qinghua, Wang Jiaxu, Wang Zhanjiang, et al. A numerical calculation method for stress field of 2D inhomogeneous materials. Acta Materiae Composite Sinica,] 2014, 31(4): 1037-1045 (in Chinese))
|
Wang P, Wang B, Wang K, et al.Analysis of inclusion in thermoelectric materials: The thermal stress field and the effect of inclusion on thermoelectric properties. Composites Part B: Engineering, 2019, 166: 130-138
|
Li D, Wang Z, Wang Q.Explicit analytical solutions for elastic fields in two imperfectly bonded half-spaces with a thermal inclusion. International Journal of Engineering Science, 2019, 135: 1-16
|
Yu C, Wang S, Gao C, et al.Thermal stress analysis of current-carrying media containing an inclusion with arbitrarily-given shape. Applied Mathematical Modelling, 2020, 79: 753-767
|
Maranganti R, Sharma P.Strain field calculations in embedded quantum dots and wires. Journal of Computational and Theoretical Nanoscience, 2007, 4(4): 715-738
|
Jin X, Keer L, Wang Q.New Green's function for stress field and a note of its application in quantum-wire structures. International Journal of Solids and Structures, 2009, 46(21): 3788-3798
|
Bedayat H, Taleghani A.Two interacting ellipsoidal inhomogeneities: Applications in geoscience. Computers & Geosciences, 2015, 76: 72-79
|
Zhang X, Lyu D, Li P, et al.A closed-form solution for the horizontally aligned thermal-porous spheroidal inclusion in a half-space and its applications in geothermal reservoirs. Computers & Geosciences, 2019, 122: 15-24
|
Faux D, Downes J, Oreilly E.Analytic solutions for strain distributions in quantum-wire structures. Journal of Applied Physics, 1997, 82(8): 3754-3762
|
Nakasone Y, Nishiyama H, Nojiri T.Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Materials Science and Engineering: A, 2000, 285(1): 229-238
|
Li P, Zhang X, Lyu D, et al.A computational scheme for the interaction between an edge dislocation and an arbitrarily shaped inhomogeneity via the numerical equivalent inclusion method. Physical Mesomechanics, 2019, 22(2): 164-171
|
金晓清, 牛飞飞, 张睿等. 均布激励基本单元解析解的一种记号方法. 上海交通大学学报, 2016, 50(8): 1221-1227 (Jin Xiaoqing, Niu Feifei, Zhang Rui, et al. A notation for element solution to uniformly distributed excitation over a rectangular/cuboidal domain. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1221-1227 (in Chinese))
|