EI、Scopus 收录
中文核心期刊

任意形状热夹杂位移场的三角形单元离散算法

侯佳卉, 李璞, 黎江林, 金晓清

侯佳卉, 李璞, 黎江林, 金晓清. 任意形状热夹杂位移场的三角形单元离散算法[J]. 力学学报, 2021, 53(1): 205-212. DOI: 10.6052/0459-1879-20-240
引用本文: 侯佳卉, 李璞, 黎江林, 金晓清. 任意形状热夹杂位移场的三角形单元离散算法[J]. 力学学报, 2021, 53(1): 205-212. DOI: 10.6052/0459-1879-20-240
Hou Jiahui, Li Pu, Li Jianglin, Jin Xiaoqing. A TRIANGULAR ELEMENT DISCRETIZATION FOR COMPUTING DISPALCEMENT OF AN ARBITRARILY SHAPED THERMAL INCLUSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 205-212. DOI: 10.6052/0459-1879-20-240
Citation: Hou Jiahui, Li Pu, Li Jianglin, Jin Xiaoqing. A TRIANGULAR ELEMENT DISCRETIZATION FOR COMPUTING DISPALCEMENT OF AN ARBITRARILY SHAPED THERMAL INCLUSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 205-212. DOI: 10.6052/0459-1879-20-240
侯佳卉, 李璞, 黎江林, 金晓清. 任意形状热夹杂位移场的三角形单元离散算法[J]. 力学学报, 2021, 53(1): 205-212. CSTR: 32045.14.0459-1879-20-240
引用本文: 侯佳卉, 李璞, 黎江林, 金晓清. 任意形状热夹杂位移场的三角形单元离散算法[J]. 力学学报, 2021, 53(1): 205-212. CSTR: 32045.14.0459-1879-20-240
Hou Jiahui, Li Pu, Li Jianglin, Jin Xiaoqing. A TRIANGULAR ELEMENT DISCRETIZATION FOR COMPUTING DISPALCEMENT OF AN ARBITRARILY SHAPED THERMAL INCLUSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 205-212. CSTR: 32045.14.0459-1879-20-240
Citation: Hou Jiahui, Li Pu, Li Jianglin, Jin Xiaoqing. A TRIANGULAR ELEMENT DISCRETIZATION FOR COMPUTING DISPALCEMENT OF AN ARBITRARILY SHAPED THERMAL INCLUSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 205-212. CSTR: 32045.14.0459-1879-20-240

任意形状热夹杂位移场的三角形单元离散算法

基金项目: 1) 国家自然科学基金(51875059, 11932004), 重庆市科技计划(cstc2020jcyj-msxmX0850) 和中央高校基本科研业务费项目(2020CDJ-LHZZ-067)资助.
详细信息
    通讯作者:

    2)金晓清, 研究员, 主要研究方向: 摩擦学、断裂疲劳、细观力学. E-mail:jinxq@cqu.edu.cn

  • 中图分类号: O302

A TRIANGULAR ELEMENT DISCRETIZATION FOR COMPUTING DISPALCEMENT OF AN ARBITRARILY SHAPED THERMAL INCLUSION

  • 摘要: 平面夹杂模型在纤维增强型复合材料中有广泛应用.复合材料内部通常含有不规则形状夹杂,而夹杂物的存在能严重影响材料的机械力学性能,往往导致应力集中及裂纹萌生等失效先兆.先前关于多边形夹杂的研究大多数关注受均匀本征应变下的应力/应变解,而对位移的分析较少. 基于格林函数方法和围道积分,本文给出了平面热夹杂边界线单元的封闭解析解,可方便应用于受任意分布本征应变的任意形状平面热夹杂位移场的数值计算.当夹杂受均匀本征应变时, 只需将该夹杂边界进行一维离散,因而本文方法可直接得出受均匀分布热本征应变的任意多边形夹杂位移场的封闭解析解.当夹杂区域存在非均匀分布本征应变时,可将该区域划分为足够小的三角形单元进行数值计算. 众所周知,应力应变场在多边形夹杂顶点处具有奇异性,容易导致数值计算上的处理困难及相应的数值稳定性问题; 然而本文工作表明,在多边形顶点处位移场是连续有界的, 因而数值稳定性较好.本文算法可以便捷高效地通过计算机编程实现. 文中给出的验证算例,均体现了本文离散方法的高精度、以及计算编程的鲁棒性.
    Abstract: Inclusion models have been widely used to explore the micromechanical properties of fiber-reinforced composite materials. The composite materials usually contain irregularly shaped inclusions, which can severely affect the mechanical properties of the materials. Abundant research has demonstrated that the stress localizations as well as the sites of crack initiation are predominantly detected in the neighborhood of nonmetallic inclusions. Previous studies on polygonal inclusion mainly focused on the stress/strain solutions under uniform eigenstrains, while the analyses on displacement are limited. Based on the method of Green's function and contour integral, this work presents a closed-form solution for a line element along the boundary of a two-dimensional thermal inclusion. The proposed method of solution is effective for determining the displacement of an arbitrarily shaped inclusion subjected to any distributed dilatational eigenstrain. In the case of uniform eigenstrain, only the boundary of the inclusion needs to be discretized into line elements; therefore, the proposed method analytically yields the closed-form solution for the displacement of an arbitrary polygonal inclusion subjected to uniform thermal eigenstrain. When the eigenstrain is non-uniformly distributed in the inclusion, the resulting displacements may be evaluated by discretizing the thermal inclusion into a system of triangular elements. It is known that the stress and strain fields exhibit singularities at the vertices of a polygonal inclusion. Such singularity issue can be intractable in numerical evaluations of the stresses/strains in the vicinity of the vertices, leading to a commonly seen yet tricky phenomenon of numerical instability. In contrast, the present work shows that the displacement is continuous and bounded at the corners of the polygon. Other than the merit of numerical discretization, the derived closed-form solutions may be conveniently programmed on a personal computer, while the corresponding algorithm seems to be straightforward, facilitating a high accurate and expeditious evaluation of the displacements. Benchmark examples demonstrate the computational efficiency and numerical robustness of the proposed method.
  • 国家自然科学基金会. 机械工程学科发展战略报告. 北京: 科学出版社, 2010
    (National Natural Science Foundation of China. Mechanical Engineering Discipline Development Strategy Report. Beijing: Science Press, 2010 (in Chinese))
    Mura T.Micromechanics of Defects in Solids. Dordrecht: Kluwer Academic Publishers, 1982
    Eshelby JD.Progress in solid mechanics. Journal of the Mechanics and Physics of Solids, 1961, 9(1): 67
    Eshelby JD, Peierls RE.The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 241(1226): 376-396
    Biao W.Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. International Journal of Solids and Structures, 1992, 29(3): 293-308
    Wu L, Du S.The elastic field in a half-space with a circular cylindrical inclusion. Journal of Applied Mechanics, 1996, 63(4): 925-932
    Zou W, He Q, Huang M, et al.Eshelby's problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 2010, 58(3): 346-372
    曾祥太, 吕爱钟. 含有非圆形双孔的无限平板中应力的解析解研究. 力学学报, 2019, 51(1): 170-181 (Zeng Xiangtai, L$\ddot{u}$Aizhong. Analytical stress solution research on an infinite plate containing two non-circular holes. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 170-181(in Chinese))
    郭树起. 应用边界积分法求圆形夹杂问题的解析解. 力学学报, 2020, 52(1): 73-81 (Guo Shuqi. Exact solution of circular inclusion problems by a boundary integral method. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81 (in Chinese))
    李岩松, 陈寿根. 寒区非圆形隧道冻胀力的解析解. 力学学报, 2020, 52(1): 196-207 (Li Yansong, Chen Shougen. Analytical solution of frost heaving force in non-circular cold region tunnels. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207 (in Chinese))
    Ju J, Sun L.A novel formulation for the exterior-point Eshelby's tensor of an ellipsoidal inclusion. Journal of Applied Mechanics, E1999, 66(2): 570-574
    Jin X, Keer L, Wang Q.A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. Journal of Applied Mechanics, 2011, 78(3): 031009
    Jin X, Lyu D, Zhang X, et al.Explicit analytical solutions for a complete set of the Eshelby tensors of an ellipsoidal inclusion. Journal of Applied Mechanics, 2016, 83(12): 121010-12
    Jin X, Zhang X, Li P, et al.On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape. Journal of Applied Mechanics, 2017, 84(7): 074501
    Wang P, Wang B, Wang K, et al.Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. International Journal of Engineering Science, 2019, 142: 158-169
    Shen X, Liu X, Dong S, et al.RVE model with shape and position defects for predicting mechanical properties of 3D braided CVI-SiCf/SiC composites. Composite Structures, 2018, 195: 325-334
    Jiang W, Xu X, Zhao Y, et al.Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite. Materials Science and Engineering: A, 2018, 721: 263-273
    Nagaoka Y, Tan R, Li R, et al.Superstructures generated from truncated tetrahedral quantum dots. Nature, 2018, 561(7723): 378-382
    Chiu Y.On the internal stresses in a half plane and a layer containing localized inelastic strains or inclusions. Journal of Applied Mechanics, 1980, 47(2): 313-318
    Rodin G.Eshelby's inclusion problem for polygons and polyhedra. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 1977-1995
    Nozaki H, Taya M.Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. Journal of Applied Mechanics-Transactions of the ASME, 1997, 64(3): 495-502
    Ru C.Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane. Journal of Applied Mechanics-transactions of The ASME, 1999, 66(2): 315-323
    周青华, 王家序, 王战江等.二维非均质材料应力场的数值化计算方法. 复合材料学报, 2014, 31(4): 1037-1045 (Zhou Qinghua, Wang Jiaxu, Wang Zhanjiang, et al. A numerical calculation method for stress field of 2D inhomogeneous materials. Acta Materiae Composite Sinica,] 2014, 31(4): 1037-1045 (in Chinese))
    Wang P, Wang B, Wang K, et al.Analysis of inclusion in thermoelectric materials: The thermal stress field and the effect of inclusion on thermoelectric properties. Composites Part B: Engineering, 2019, 166: 130-138
    Li D, Wang Z, Wang Q.Explicit analytical solutions for elastic fields in two imperfectly bonded half-spaces with a thermal inclusion. International Journal of Engineering Science, 2019, 135: 1-16
    Yu C, Wang S, Gao C, et al.Thermal stress analysis of current-carrying media containing an inclusion with arbitrarily-given shape. Applied Mathematical Modelling, 2020, 79: 753-767
    Maranganti R, Sharma P.Strain field calculations in embedded quantum dots and wires. Journal of Computational and Theoretical Nanoscience, 2007, 4(4): 715-738
    Jin X, Keer L, Wang Q.New Green's function for stress field and a note of its application in quantum-wire structures. International Journal of Solids and Structures, 2009, 46(21): 3788-3798
    Bedayat H, Taleghani A.Two interacting ellipsoidal inhomogeneities: Applications in geoscience. Computers & Geosciences, 2015, 76: 72-79
    Zhang X, Lyu D, Li P, et al.A closed-form solution for the horizontally aligned thermal-porous spheroidal inclusion in a half-space and its applications in geothermal reservoirs. Computers & Geosciences, 2019, 122: 15-24
    Faux D, Downes J, Oreilly E.Analytic solutions for strain distributions in quantum-wire structures. Journal of Applied Physics, 1997, 82(8): 3754-3762
    Nakasone Y, Nishiyama H, Nojiri T.Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes. Materials Science and Engineering: A, 2000, 285(1): 229-238
    Li P, Zhang X, Lyu D, et al.A computational scheme for the interaction between an edge dislocation and an arbitrarily shaped inhomogeneity via the numerical equivalent inclusion method. Physical Mesomechanics, 2019, 22(2): 164-171
    金晓清, 牛飞飞, 张睿等. 均布激励基本单元解析解的一种记号方法. 上海交通大学学报, 2016, 50(8): 1221-1227 (Jin Xiaoqing, Niu Feifei, Zhang Rui, et al. A notation for element solution to uniformly distributed excitation over a rectangular/cuboidal domain. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1221-1227 (in Chinese))
  • 期刊类型引用(2)

    1. 龚诗雨,朱凯,陈楠,蒋志桢,刘宽宇,李璞,金晓清. 等参三角形热夹杂的构造及位移场数值计算. 固体力学学报. 2023(02): 133-143 . 百度学术
    2. 李璞,朱凯,侯佳卉,谢东东,钱厚鹏,金晓清. 非均质材料与位错交互能的数值等效夹杂算法. 工程力学. 2022(07): 10-18 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  981
  • HTML全文浏览量:  137
  • PDF下载量:  118
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-07-05

目录

    /

    返回文章
    返回