EI、Scopus 收录
中文核心期刊

主动脉瓣倾斜角度血流动力学的 PIV 实验研究

刘赵淼, 薛贺波, 杨刚, 逄燕, 房永超, 李梦麒, 齐轶鹏, 史艺

刘赵淼, 薛贺波, 杨刚, 逄燕, 房永超, 李梦麒, 齐轶鹏, 史艺. 主动脉瓣倾斜角度血流动力学的 PIV 实验研究[J]. 力学学报, 2020, 52(6): 1811-1821. DOI: 10.6052/0459-1879-20-229
引用本文: 刘赵淼, 薛贺波, 杨刚, 逄燕, 房永超, 李梦麒, 齐轶鹏, 史艺. 主动脉瓣倾斜角度血流动力学的 PIV 实验研究[J]. 力学学报, 2020, 52(6): 1811-1821. DOI: 10.6052/0459-1879-20-229
Liu Zhaomiao, Xue Hebo, Yang Gang, Pang Yan, Fang Yongchao, Li Mengqi, Qi Yipeng, Shi Yi. PIV EXPERIMENTAL STUDY ON THE HEMODYNAMICS OF AORTIC VALVE UNDER VARIED TILTED ANGLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1811-1821. DOI: 10.6052/0459-1879-20-229
Citation: Liu Zhaomiao, Xue Hebo, Yang Gang, Pang Yan, Fang Yongchao, Li Mengqi, Qi Yipeng, Shi Yi. PIV EXPERIMENTAL STUDY ON THE HEMODYNAMICS OF AORTIC VALVE UNDER VARIED TILTED ANGLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1811-1821. DOI: 10.6052/0459-1879-20-229
刘赵淼, 薛贺波, 杨刚, 逄燕, 房永超, 李梦麒, 齐轶鹏, 史艺. 主动脉瓣倾斜角度血流动力学的 PIV 实验研究[J]. 力学学报, 2020, 52(6): 1811-1821. CSTR: 32045.14.0459-1879-20-229
引用本文: 刘赵淼, 薛贺波, 杨刚, 逄燕, 房永超, 李梦麒, 齐轶鹏, 史艺. 主动脉瓣倾斜角度血流动力学的 PIV 实验研究[J]. 力学学报, 2020, 52(6): 1811-1821. CSTR: 32045.14.0459-1879-20-229
Liu Zhaomiao, Xue Hebo, Yang Gang, Pang Yan, Fang Yongchao, Li Mengqi, Qi Yipeng, Shi Yi. PIV EXPERIMENTAL STUDY ON THE HEMODYNAMICS OF AORTIC VALVE UNDER VARIED TILTED ANGLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1811-1821. CSTR: 32045.14.0459-1879-20-229
Citation: Liu Zhaomiao, Xue Hebo, Yang Gang, Pang Yan, Fang Yongchao, Li Mengqi, Qi Yipeng, Shi Yi. PIV EXPERIMENTAL STUDY ON THE HEMODYNAMICS OF AORTIC VALVE UNDER VARIED TILTED ANGLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1811-1821. CSTR: 32045.14.0459-1879-20-229

主动脉瓣倾斜角度血流动力学的 PIV 实验研究

基金项目: 1) 北京市教委科技计划重点项目(KZ201710005006)
详细信息
    作者简介:

    2) 刘赵淼,教授,主要研究方向:微尺度流体力学、血流动力学、流固耦合理论及工程应用. E-mail: lzm@bjut.edu.cn

    通讯作者:

    刘赵淼

  • 中图分类号: O368

PIV EXPERIMENTAL STUDY ON THE HEMODYNAMICS OF AORTIC VALVE UNDER VARIED TILTED ANGLES

  • 摘要: 瓣叶血栓是主动脉瓣置换术后典型的继发性瓣膜疾病,血流动力学特征异常在其发展过程中至关重要.本文利用粒子图像测速 (particle image velocimetry,PIV) 系统,实验研究了主动脉瓣开口纵向轴线与升主动脉纵向轴线之间倾斜角度 ($\alpha =0^\circ$, $\alpha=5^\circ$,$\alpha =10^\circ$ 和 $\alpha =15^\circ$) 对速度、涡度和黏性剪应力分布等血流动力学特性的影响.研究结果表明:当 $\alpha =0^\circ$ 时,主动脉根部跨瓣血液流动为中心对称流动,而 $\alpha =5^\circ$,$\alpha=10^\circ$ 和 $\alpha =15^\circ$ 时跨瓣血液流动向升主动脉的左冠状动脉一侧倾斜.随着倾斜角度增大,跨瓣血液流动方向倾斜程度增加,血液流动冲击升主动脉壁,损伤内皮细胞导致血栓形成.主动脉瓣倾斜时主动脉窦血液流动速度增大,涡旋也更向主动脉窦底部运动,不利于血液从冠状动脉口流出向心肌供血.同时,主动脉根部的高涡度和高黏性剪应力区域也向升主动脉的左冠状动脉一侧倾斜,主动脉窦的高涡度区域位于主动脉窦底部、高黏性剪应力区域分布于主动脉窦壁面处.主动脉瓣存在倾斜角度时,涡度和黏性剪应力较大,特别是 $\alpha =10^\circ$ 和 $\alpha=15^\circ$,为血栓形成提供了有利环境.研究结果可为临床主动脉瓣置换术参数选择以及继发性瓣膜疾病的避免提供理论依据和技术参考.
    Abstract: Leaflet thrombosis is a typical secondary valvular disease after aortic valve replacement, and abnormal hemodynamic characteristics are crucial in its development. In this study, the effects of angle between the longitudinal axis of the aortic valve and that of the ascending aorta ($\alpha =0^\circ$, $\alpha =5^\circ$, $\alpha =10^\circ$ and $\alpha =15^\circ$) on the velocity, vorticity and viscous shear stress distribution are investigated using particle image velocimetry (PIV). It is of great significance to understand the hemodynamic mechanism of thrombosis after aortic valve replacement. The results show that the transvalvular flow in the aortic root is centrosymmetric flow when $\alpha =0^\circ$, while it tilts to the side of left coronary artery when $\alpha =5^\circ$, $\alpha =10^\circ$ and $\alpha =15^\circ$. The transvalvular flow tilts with the increasing of tilted angle and impacts on the wall of the ascending aorta, damaging the endothelial cells and causing thrombosis. In addition, the velocity within the aortic sinus increases and the vortex also moves toward the bottom of the aortic sinus with aortic valve tilted, which is unfavorable for the blood flowing from the coronary artery ostium to the myocardium for blood supply. Meanwhile, the high vorticity and high viscous shear stress area of the aortic root also tilts to the side of left coronary artery. And the high vorticity area of the aortic sinus is located at the bottom of the aortic sinus and the high viscous shear stress area is distributed at the wall of the aortic sinus. The vorticity and viscous shear stress are realy high when there is a mismatch between the ascending aorta longitudinal axis and that of the aortic valve, especially $\alpha =10^\circ$ and $\alpha =15^\circ$, providing a favorable environment for thrombosis. The results benefit to contribute theoretical bases and technical reference for the selection of clinical aortic valve replacement surgical parameters and that of the avoidance of secondary valvular disease.
  • [1] Clavel MA, C?té N, Pibarot P. Aortic stenosis//Heart Valve Disease. Springer. 2020: 21-46
    [2] Carabello BA, Alwair H, Nekkanti R. Comprehensive approach to aortic valve disease//Valvular Heart Disease. Springer. 2020: 71-101
    [3] 刘镕珲, 金昌, 冯文韬 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017(6):506-512
    [3] ( Liu Ronghui, Jin Chang, Feng Wentao, et al. The impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation:A numerical simulation study. Journal of Medical Biomechanics, 2017(6):506-512 (in Chinese))
    [4] S?Ndergaard L, Saraste A, Christersson C, et al. The year in cardiology 2017: Valvular heart disease. European Heart Journal, 2018,39(8):650-657
    [5] Yevtushenko P, Hellmeier F, Bruening J, et al. Surgical aortic valve replacement: Are we able to improve hemodynamic outcome. Biophysical Journal, 2019,117(12):2324-2336
    [6] Wollersheim LW, Li WW, De Mol BA. Current status of surgical treatment for aortic valve stenosis. Journal of Cardiac Surgery: Including Mechanical and Biological Support for the Heart and Lungs, 2014,29(5):630-637
    [7] Zhu GY, Huang H, Su YL, et al. Numerical investigation of the effects of prosthetic aortic valve design on aortic hemodynamic characteristics. Applied Sciences, 2020,10(4):1396
    [8] Kheradvar A, Groves EM, Dasi LP, et al. Emerging trends in heart valve engineering: Part I. Solutions for future. Annals of Biomedical Engineering, 2015,43(4):833-843
    [9] Chakravarty T, S?ndergaard L, Friedman J, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: An observational study. Lancet, 2017,389(10087):2383-2392
    [10] Lerakis S, Hayek SS, Douglas PS. Paravalvular aortic leak after transcatheter aortic valve replacement: Current knowledge. Circulation, 2013,127(3):397-407
    [11] John D, Buellesfeld L, Yuecel S, et al. Correlation of device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC: Cardiovascular Interventions, 2010,3(2):233-243
    [12] Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. Journal of Biomechanics, 2016,49(12):2513-2519
    [13] Oechtering TH, Sieren M, Schubert K, et al. In vitro 4D flow MRI evaluation of aortic valve replacements reveals disturbed flow distal to biological but not to mechanical valves. Journal of Cardiac Surgery, 2019,34(12):1452-1457
    [14] Ge L, Sotiropoulos F. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: Is there a link with valve calcification. Journal of Biomechanical Engineering, 2010,132(1):014505
    [15] Midha PA, Raghav V, Okafor I, et al. The effect of valve-in-valve implantation height on sinus flow. Annals of Biomedical Engineering, 2016,45(2):1-8
    [16] Groves EM, Falahatpisheh A, Su JL, et al. The effects of positioning of transcatheter aortic valves on fluid dynamics of the aortic root. Asaio Journal, 2014,60(5):545-552
    [17] Toninato R, Salmon J, Susin FM, et al. Physiological vortices in the sinuses of Valsalva: An in vitro approach for bio-prosthetic valves. Journal of Biomechanics, 2016,49(13):2635-2643
    [18] Sherif MA, Abdel-Wahab M, St?cker B, et al. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. Journal of the American College of Cardiology, 2010,56(20):1623-1629
    [19] Hoda H, Dollery J, Lilly Scott M, et al. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Annals of Thoracic Surgery, 2018,106(1):70-78
    [20] Hatoum H, Dollery J, Lilly SM, et al. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Annals of Biomedical Engineering, 2019,47(1):75-84
    [21] Koskinas KC, Chatzizisis YS, Antoniadis AP, et al. Role of endothelial shear stress in stent restenosis and thrombosis: Pathophysiologic mechanisms and implications for clinical translation. Journal of the American College of Cardiology, 2012,59(15):1337-1349
    [22] Hatoum H, Yousefi A, Lilly S, et al. An In-vitro evaluation of turbulence after transcatheter aortic valve implantation. Journal of Thoracic & Cardiovascular Surgery, 2018,156(5):1-12
    [23] Bark DL, Para AN, Ku DN. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnology & Bioengineering, 2012,109(10):2642-2650
    [24] Bailey J, Curzen N, Bressloff NW. The impact of imperfect frame deployment and rotational orientation on stress within the prosthetic leaflets during transcatheter aortic valve implantation. Journal of Biomechanics, 2017,53(Complete):22-28
    [25] 刘赵淼, 杨刚, 逄燕 等. 不同心排出量下主动脉瓣血流动力学的 PIV 实验研究. 力学学报, 2019,51(6):1918-1926
    [25] ( Liu Zhaomiao, Yang Gang, Pang Yan, et al. Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1918-1926 (in Chinese))
    [26] Liu Z, Yang G, Nan S, et al. The effect of anastomotic angle and diameter ratio on flow field in the distal end-to-side anastomosis. Journal of Engineering in Medicine, 2020,234(4):377-386
    [27] Liu ZM, Zhao SW, Li Y, et al. Influence of coronary bifurcation angle on atherosclerosis. Acta Mechanica Sinica, 2019,35(6):1269-1278
    [28] Makkar RR, Fontana G, Jilaihawi H, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. New England Journal of Medicine, 2015,373(21):2015-2024
    [29] 申峰, 刘赵淼. 显微粒子图像测速技术——微流场可视化测速技术及应用综述. 机械工程学报, 2012,48(4):155-168
    [29] ( Shen Feng, Liu Zhaomiao. Review on the micro-particle image velocimetry technique and applications. Joournal of Mechanical Engineering, 2012,48(4):155-168 (in Chinese))
    [30] 崔光耀, 潘翀, 高琪 等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017,49(6):1201-1212
    [30] ( Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1201-1212 (in Chinese))
    [31] 彭宁宁, 刘志丰, 王连泽. 亚微米颗粒在汇作用下运动机理的实验研究. 力学学报, 2017,49(2):289-298
    [31] ( Peng Ningning, Liu Zhifeng, Wang Lianze. Experimental study of submicron particles' motion in the effect of particle-sink. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):289-298 (in Chinese))
    [32] 高天达, 孙姣, 范赢 等. 基于 PIV技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110
    [32] ( Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particles in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
    [33] 张鑫, 黄勇, 阳鹏宇 等. 等离子体激励器诱导射流的湍流特性研究. 力学学报, 2018,50(4):776-786
    [33] ( Zhang Xin, Huang Yong, Yang Pengyu, et al. Investigation on the turbulent characteristics of the jet induced by a plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):776-786 (in Chinese))
    [34] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    [34] ( Li Guoqiang, Zhang Weiguo, Chen Li, et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765 (in Chinese))
    [35] 王殿恺, 文明, 王伟东 等. 脉冲激光与正激波相互作用过程和减阻机理的实验研究. 力学学报, 2018,50(6):1337-1345
    [35] ( Wang Dianming, Wen Ming, Wang Weidong, et al. Experimental study on process and mechanisms of wave drag reduction during pulsed laser interacting with normal shock. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1337-1345 (in Chinese))
    [36] Yap CH, Saikrishnan N, Tamilselvan G, et al. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Journal of Biomechanical Engineering, 2011,133(6):061007
    [37] Keshavarz-Motamed Z, Garcia J, Gaillard E, et al. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Experiments in Fluids, 2014,55(3):1-16
    [38] Salica A, Pisani G, Morbiducci U, et al. The combined role of sinuses of Valsalva and flow pulsatility improves energy loss of the aortic valve. European Journal of Cardio-thoracic Surgery, 2016,49(4):1222-1227
    [39] Tango AM, Salmonsmith J, Ducci A, et al. Validation and extension of a fluid-structure interaction model of the healthy aortic valve. Cardiovascular Engineering and Technology, 2018,9(4):739-751
    [40] Yin W, Shanmugavelayudam SK, Rubenstein DA. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thrombosis Research, 2011,127(3):235-241
    [41] Calderan J, Mao W, Sirois E, et al. Development of an In vitro model to characterize the effects of transcatheter aortic valve on coronary artery flow. Artificial Organs, 2015,40(6):612-619
    [42] Fung YC. Blood Flow in Arteries. Edward Arnold, 1974
    [43] Hatoum H, Dollery J, Lilly SM, et al. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: An in vitro study. The Journal of Thoracic and Cardiovascular Surgery, 2019,157(2):540-549
    [44] Forleo M, Dasi LP. Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Annals of Biomedical Engineering, 2014,42(1):110-122
    [45] Bellofiore A, Donohue EM, Quinlan NJ. Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Experiments in Fluids, 2011,51(1):161-176
    [46] Saw SN, Dawn C, Biswas A, et al. Characterization of the in vivo wall shear stress environment of human fetus \sumbilical arteries and veins. Biomechanics & Modeling in Mechanobiology, 2016,16(1):197-211
    [47] Weinberg EJ, Mack PJ, Schoen FJ, et al. Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovascular Engineering, 2010,10(1):5-11
    [48] Hatoum H, Moore BL, Maureira P, et al. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. Journal of Thoracic & Cardiovascular Surgery, 2017,154(1):32-43
    [49] Yap CH, Saikrishnan N, Tamilselvan G, et al. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. American Journal of Physiology-Heart and Circulatory Physiology, 2012,303(6):H721-H731
    [50] Gunning PS, Saikrishnan N, McNamara LM, et al. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Annals of Biomedical Engineering, 2014,42(6):1195-1206
计量
  • 文章访问数:  1990
  • HTML全文浏览量:  416
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回