EI、Scopus 收录
中文核心期刊

基于Stereo-PIV技术的三维发卡涡结构定量测量研究

田海平, 伊兴睿, 钟山, 姜楠, 张山鹰

田海平, 伊兴睿, 钟山, 姜楠, 张山鹰. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究[J]. 力学学报, 2020, 52(6): 1666-1677. DOI: 10.6052/0459-1879-20-203
引用本文: 田海平, 伊兴睿, 钟山, 姜楠, 张山鹰. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究[J]. 力学学报, 2020, 52(6): 1666-1677. DOI: 10.6052/0459-1879-20-203
Tian Haiping, Yi Xingrui, Zhong Shan, Jiang Nan, Zhang Shanying. EXPERIMENTAL STUDY ON QUANTITATIVE MEASUREMENT OF THREE-DIMENSIONAL STRUCTURE OF HAIRPIN VORTEX BY STEREO-PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677. DOI: 10.6052/0459-1879-20-203
Citation: Tian Haiping, Yi Xingrui, Zhong Shan, Jiang Nan, Zhang Shanying. EXPERIMENTAL STUDY ON QUANTITATIVE MEASUREMENT OF THREE-DIMENSIONAL STRUCTURE OF HAIRPIN VORTEX BY STEREO-PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677. DOI: 10.6052/0459-1879-20-203
田海平, 伊兴睿, 钟山, 姜楠, 张山鹰. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究[J]. 力学学报, 2020, 52(6): 1666-1677. CSTR: 32045.14.0459-1879-20-203
引用本文: 田海平, 伊兴睿, 钟山, 姜楠, 张山鹰. 基于Stereo-PIV技术的三维发卡涡结构定量测量研究[J]. 力学学报, 2020, 52(6): 1666-1677. CSTR: 32045.14.0459-1879-20-203
Tian Haiping, Yi Xingrui, Zhong Shan, Jiang Nan, Zhang Shanying. EXPERIMENTAL STUDY ON QUANTITATIVE MEASUREMENT OF THREE-DIMENSIONAL STRUCTURE OF HAIRPIN VORTEX BY STEREO-PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677. CSTR: 32045.14.0459-1879-20-203
Citation: Tian Haiping, Yi Xingrui, Zhong Shan, Jiang Nan, Zhang Shanying. EXPERIMENTAL STUDY ON QUANTITATIVE MEASUREMENT OF THREE-DIMENSIONAL STRUCTURE OF HAIRPIN VORTEX BY STEREO-PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1666-1677. CSTR: 32045.14.0459-1879-20-203

基于Stereo-PIV技术的三维发卡涡结构定量测量研究

基金项目: 1) 国家自然科学基金(11802195);国家自然科学基金(11732010);国家自然科学基金(11972251);山西省应用基础研究项目(201801D221027);中国国家留学基金
详细信息
    作者简介:

    2) 田海平,讲师,主要研究方向:实验流体力学, 湍流相干结构,流动控制. E-mail: tianhaiping88@126.com

    通讯作者:

    田海平

  • 中图分类号: O357.5

EXPERIMENTAL STUDY ON QUANTITATIVE MEASUREMENT OF THREE-DIMENSIONAL STRUCTURE OF HAIRPIN VORTEX BY STEREO-PIV

  • 摘要: 发卡涡是湍流相干结构研究中最为关注的内容,实现发卡涡三维结构的定量测量并进行流体动力学分析,对深入研究湍流相干结构、实现湍流精准控制等具有重要意义.本研究通过对合成射流装置进行合理控制,使得层流边界层中产生了规则的人造发卡涡结构,进而用体视图像粒子测速仪(Stereo-PIV)锁相实验技术对发卡涡结构所在的三维空间流场进行了定量测量,并得到了一个完整周期内形成的发卡涡三维结构的空间流场. 结果发现,重构所得的三维发卡涡结构质量较高, 实验技术和方案具有可行性.发卡涡结构所在空间流场情况,符合目前人们对于发卡涡、高低速条带、喷射和扫掠事件的常规认识. 此外,对近壁二次流向涡、展向涡量集中区域的展向涡头和强剪切区域、与低速喷射流体相关的汇聚流动和发散流动等有了更细致的认识.同时, 也探讨了"基于二维脉动流场的相关特征去重构发卡涡三维流场"的可行性.为进一步定量探究发卡涡结构的形成演化、不同涡结构的融合及二次诱导等壁湍流相干结构问题提供思路.
    Abstract: Hairpin vortex is one of the most concerned paradigm in the study of turbulent coherent structures. The quantitative experimental measurement and hydrodynamic analysis of the three-dimensional hairpin vortex structures~is of great significance for further~applications in the turbulent flow control.~In this study, with an optimized arrangement of the synthetic jet device, a~series of~regular artificial hairpin vortex structures~are~produced in the laminar boundary layer, and then the three-dimensional shapes of~hairpin vortex structures are quantitatively revealed by stereoscopic particle image velocimetry (Stereo-PIV) using phase-locking technique. The three-dimensional flow field of the hairpin vortex within a complete period is obtained. The quality of the reconstructed three-dimensional hairpin vortex structure is reliable. The results are in line with the general knowledge of hairpin vortex, low/high~speed streaks and~ejection/sweeping~events. In addition, we acquire a more detailed understanding of the near-wall secondary vortex, the spanwise~vortex head and the area of strong shear in the spanwise~vorticity~concentration region, and the convergent/divergent flow related to the ejection~event. We also discuss the reconstruction of the three-dimensional flow field of hairpin vortice based on the fluctuating characteristics of two-dimensional flow field. It provides an idea for the quantitative study of wall turbulence coherent structure in the formation and evolution of the hairpin vortex structure, the fusion of adjacent vortex structures and the secondary induced vortex.
  • [1] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015,45(3):111-139
    [1] ( Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015,45(3):111-139 (in Chinese))
    [2] Chen J. Two-point statistics of coherent structure in turbulent flow. Journal of Flow Control, Measurement & Visualization, 2019,07(04):153-173
    [3] Xu F, Zhong S, Zhang S. Statistical analysis of vortical structures in turbulent boundary layer over directional grooved surface pattern with spanwise heterogeneity. Physics of Fluids, 2019,31(8):085110
    [4] 高天达, 孙姣, 范赢 等. 基于 PIV 技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110
    [4] ( Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
    [5] Li W, Liu H. Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces. Acta Mechanica Sinica, 2019,35(3):457-471
    [6] Tang ZQ, Jiang N. The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence. Physics of Fluids, 2020,32(1):015110
    [7] 王帅杰, 崔晓通, 白建侠 等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019,51(3):767-774
    [7] ( Wang Shuaijie, Cui Xiaotong, Bai Jianxia, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):767-774 (in Chinese))
    [8] Theodorsen T. Mechanism of turbulence: in Proceedings of the Second Midwestern Conference on Fluid Mechanics, Ohio State University. 1952: 1-19
    [9] Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991,23(1):601-639
    [10] Tian HP, Jiang N, Huang YX, et al. Study on local topology model of low/high streak structures in wall-bounded turbulence by tomographic time-resolved particle image velocimetry. Appl Math Mech -Engl Ed, 2015,36(9):1121-1130
    [11] Tian HP, Zhang JX, Jiang N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow. Experimental Thermal and Fluid Science, 2015,69:27-37
    [12] Adrian RJ, Meinhart CD, Tomkin CD. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 2000,422:1-54
    [13] Tomkins CD, Adrian RJ. Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 2003,490:37-74
    [14] Adrian RJ. Hairpin vortex organization in wall turbulence. Phys Fluids, 2007,19:041301
    [15] Christensen KT, Adrian RJ. Statistical evidence of hairpin vortex packets in wall turbulence. Journal of Fluid Mechanics, 2001,431:433-443
    [16] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的 TRPIV 实验研究. 力学学报, 2016,48(5):1033-1039
    [16] ( Su Jian, Tian Haiping, Jiang Nan. TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1033-1039 (in Chinese))
    [17] Schr?der A, Geisler R, Elsinga GE, et al. Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Experiments in Fluids, 2007,44(2):305-316
    [18] Sabatino DR, Rossmann T. Tomographic PIV measurements of a regenerating hairpin vortex. Experiments in Fluids, 2015,57:6
    [19] Martins FJWA, Foucaut J M, Stanislas M, et al. Characterization of near-wall structures in the log-region of a turbulent boundary layer by means of conditional statistics of tomographic PIV data. Experimental Thermal and Fluid Science, 2019,105:191-205
    [20] Kirchner BM, Elliott GS, Dutton JC. Hairpin vortex structures in a supersonic, separated, longitudinal cylinder wake. Physics of Fluids, 2020,32(4):046103
    [21] Zheng XB, Jiang N. The spatial-temporal evolution of coherent structures in log law region of turbulent boundary layer. Acta Mechanica Sinica, 2015,31(1):16-24
    [22] Koo B, Kang YD. Control of synthetic hairpin vortices in laminar boundary layer for skin-friction reduction. Journal of Marine Science and Engineering, 2020,8:45
    [23] Acarlar MS, Smith CR. A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. Journal of Fluid Mechanics, 1987,175:43-83
    [24] Acarlar MS, Smith CR. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics, 1987,175:1-41
    [25] 王晋军, 丁海河. 光滑圆盘上小半球对边界层发展影响的实验研究. 实验流体力学, 2005,19(4):1-9
    [25] ( Wang Jinjun, Ding Haihe. Investigation of semi-spheres on the boundary layer development over a smooth circular plate. Journal of Experiments in Fluid Mechanics, 2005,19(4):1-9 (in Chinese))
    [26] Eshbal L, Rinsky V, David T, et al. Measurement of vortex shedding in the wake of a sphere at. Journal of Fluid Mechanics, 2019,870:290-315
    [27] Zhang C, Pan C, Wang JJ. Evolution of vortex structure in boundary layer transition induced by roughness elements. Experiments in Fluids, 2011,51(5):1343-1352
    [28] Ye Q, Schrijer FFJ, Scarano F. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV. International Journal of Heat and Fluid Flow, 2016,61:31-44
    [29] Tang Z, Wu Y, Jia Y, et al. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element. Flow, Turbulence and Combustion, 2017,100(2):365-389
    [30] Agarwal A, Nolan KP, Stafford J, et al. Visualization of three-dimensional structures shed by an oscillating beam. Journal of Fluids and Structures, 2017,70:450-463
    [31] Zhou J, Zhong S. Coherent structures produced by the interaction between synthetic jets and a laminar boundary layer and their surface shear stress patterns. Computers & Fluids, 2010,39(8):1296-1313
    [32] Jabbal M, Zhong S. Particle image velocimetry measurements of the interaction of synthetic jets with a zero-pressure gradient laminar boundary layer. Physics of Fluids, 2010,22(6):063603
    [33] Klotz L, Gumowski K, Wesfreid JE. Experiments on a jet in a crossflow in the low-velocity-ratio regime. Journal of Fluid Mechanics, 2019,863:386-406
    [34] Wen X, Tang H. Effect of phase difference on the interaction of hairpin vortices induced by in-line twin synthetic jets. Journal of Visualization, 2015,19(1):79-87
    [35] Wen X, Tang H, Duan F. Interaction of in-line twin synthetic jets with a separated flow. Physics of Fluids, 2016,28(4):209-216
    [36] Wen X, Tang H, Liu Y. Interaction of twin synthetic jets in attached and separated boundary layers: Effects of yaw angle and phase difference. Journal of Visualization, 2018,21(6):949-963
    [37] Chen J, Hussain F, Pei J, et al. Velocity-vorticity correlation structure in turbulent channel flow. Journal of Fluid Mechanics, 2014,742:291-307
    [38] Suponitsky V, Cohen J, Bar-Yoseph PZ. The generation of streaks and hairpin vortices from a localized vortex disturbance embedded in unbounded uniform shear flow. Journal of Fluid Mechanics, 2005,535:65-100
  • 期刊类型引用(5)

    1. 李慧鑫,徐多. 被动标量湍流混合的实验研究方法与进展. 实验流体力学. 2024(04): 90-103 . 百度学术
    2. 刘秀梅,吴速,李贝贝,刘申,张雨佳. 基于2D-PIV的调节阀三维流场特性研究. 华南理工大学学报(自然科学版). 2023(11): 110-118 . 百度学术
    3. 李明磊,黎宁. 结构光图像三维工业测量实验教学设备开发. 中国现代教育装备. 2022(13): 23-25 . 百度学术
    4. 王超伟,王康俊,李彪辉,姜楠. 湍流边界层等动量区演化机理的实验研究. 力学学报. 2021(03): 761-772 . 本站查看
    5. 王恋舟,吴铁成,郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报. 2021(08): 2267-2278 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1844
  • HTML全文浏览量:  575
  • PDF下载量:  185
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-06-16
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回