EI、Scopus 收录
中文核心期刊

柔性铰柔性杆机器人动力学建模、仿真和控制

方五益, 郭晛, 黎亮, 章定国

方五益, 郭晛, 黎亮, 章定国. 柔性铰柔性杆机器人动力学建模、仿真和控制[J]. 力学学报, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
引用本文: 方五益, 郭晛, 黎亮, 章定国. 柔性铰柔性杆机器人动力学建模、仿真和控制[J]. 力学学报, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
Citation: Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
方五益, 郭晛, 黎亮, 章定国. 柔性铰柔性杆机器人动力学建模、仿真和控制[J]. 力学学报, 2020, 52(4): 965-974. CSTR: 32045.14.0459-1879-20-067
引用本文: 方五益, 郭晛, 黎亮, 章定国. 柔性铰柔性杆机器人动力学建模、仿真和控制[J]. 力学学报, 2020, 52(4): 965-974. CSTR: 32045.14.0459-1879-20-067
Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. CSTR: 32045.14.0459-1879-20-067
Citation: Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. CSTR: 32045.14.0459-1879-20-067

柔性铰柔性杆机器人动力学建模、仿真和控制

基金项目: 1)国家自然科学基金(11772158);国家自然科学基金(11502113);中央高校基本科研业务费专项资金(30917011103)
详细信息
    通讯作者:

    章定国

  • 中图分类号: O313

DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS

  • 摘要: 本文探究了铰柔性对机器人动力学响应和动力学控制的影响. 首先, 建立由$n$个柔性铰和$n$个柔性杆组成的空间机器人模型, 运用递推拉格朗日动力学方法, 得到柔性机器人系统的刚柔耦合动力学方程. 在动力学建模过程中, 除了考虑杆件的拉伸变形、弯曲变形、扭转变形以及非线性耦合变形对机器人系统动力学行为的影响, 还考虑了铰的柔性对机器人动力学响应和控制的影响. 其中, 柔性铰模型是基于Spong的柔性关节简化模型, 将柔性铰看成线性扭转弹簧, 不仅考虑了铰阻尼的存在, 还考虑了柔性铰的质量效应. 其次, 编写了空间柔性铰柔性杆机器人仿真程序, 研究铰的刚度系数和阻尼系数对系统动力学响应的影响. 研究表明: 随着柔性铰刚度系数的增大, 柔性机器人的动态响应幅值减小, 振动频率变大. 随着柔性铰阻尼系数的增大, 柔性机器人的动态响应幅值减小, 振动幅值的衰减速度变快. 可通过调节柔性铰的刚度和阻尼来减小柔性铰柔性杆机器人的振动, 因此铰阻尼的研究具有重要工程意义. 最后, 研究了铰柔性在机器人系统动力学控制中的影响. 在刚性铰机械臂和柔性铰机械臂完成相同圆周运动时, 通过逆动力学方法求解得到两种情况下的关节驱动力矩. 研究表明: 引入柔性铰会使控制所需的驱动力矩变小, 对机器人控制的影响显著.
    Abstract: The effects of flexible joints on the dynamic response and control of robot are studied in this paper. Firstly, the spatial robot model consisting of $n$ flexible joints and $n$ flexible links is built, and the dynamic equations of the robot system are derived via the Lagrangian's equations. The tensile deformation, bending deformation, torsional deformation, and nonlinear coupling deformation of the flexible link are considered. Furthermore, the effects of the flexible joint are also considered in order to provide an important theoretical basis for the research of the vibration suppression and control of robots. The flexible joint is simplified as a linear torsion spring with damping, and the mass effect of the flexible joint is also considered in the model. Secondly, the dynamic simulations of the spatial manipulators are done to explore the effects of the joint stiffness and damping on the dynamic response of the robot system. The results show that as the stiffness coefficient increases, the amplitude of dynamic response of the flexible robot decreases, and the vibration frequency of the system becomes larger. As the damping coefficient increases, the dynamic response of the flexible robot decreases, and the dynamic response decays faster. The vibration of the flexible robot can be suppressed by adjusting the values of the stiffness and damping of the flexible joint. Finally, in order to study the effects of the flexibility of the joint on the control system, the rigid-joint manipulator and flexible-joint manipulator are made to move under the same circular motion. Then the joint torques of the two system are obtained respectively by solving the inverse dynamics equations, and the influence of the flexibility of the joint on the dynamics control is studied. The results show that the actuating torques required in the flexible-joint system are reduced compared to that required in the rigid-joint system.
  • [1] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述. 载人航天, 2015,21(5):435-443
    [1] ( Liu Hong, Jiang Zainan, Liu Yechao. Review of space manipulator technology. Manned Spaceflight, 2015,21(5):435-443 (in Chinese))
    [2] Likins PW. Finite element appendage equations for hybrid coordinate dynamic analysis. International Journal of Solids and Structures, 1972,8(5):709-731
    [3] Book WJ. Recursive Lagrangian dynamics of flexible manipulator arms via transformation matrices. The International Journal of Robotics Research, 1984,3(3):87-101
    [4] Zhang DG. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms. Applied Mathematics and Mechanics, 2009,30(10):1283-1294
    [5] Yang H, Hong J, Yu Z. Dynamics modelling of a flexible hub-beam system with a tip mass. Journal of Sound and Vibration, 2003,266(4):759-774
    [6] 肖建强, 章定国. 空间运动体上梁的三维动力学建模和仿真. 空间科学学报, 2006, ( 3):227-234
    [6] ( Xiao Jianqiang, Zhang Dingguo. Three-dimensional dynamic modeling and simulation of a beam attached to a spatially moving base. Chinese Journal of Space Science, 2006, ( 3):227-234 (in Chinese))
    [7] 章定国, 余纪邦. 作大范围运动的柔性梁的动力学分析. 振动工程学报, 2006,19(4):475-480
    [7] ( Zhang Dingguo, Yu Jibang. Dynamical analysis of a flexible cantilever beam with large overall motions. Journal of Vibration Engineering, 2006,19(4):475-480 (in Chinese))
    [8] 吴胜宝, 章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析. 振动工程学报, 2011,24(1):1-7
    [8] ( Wu Shengbao, Zhang Dingguo. Rigid-flexible coupling dynamic analysis of hub-flexible beam with large overall motion. Journal of Vibration Engineering, 2011,24(1):1-7 (in Chinese))
    [9] 方建士, 章定国. 旋转悬臂梁的刚柔耦合动力学建模与频率分析. 计算力学学报, 2012,29(3):333-339
    [9] ( Fang Jianshi, Zhang dingguo. Rigid-flexible coupling dynamic modeling and frequency analysis of a rotating cantilever beam. Chinese Journal of Computational Mechanics, 2012,29(3):333-339 (in Chinese))
    [10] 陈思佳, 章定国, 洪嘉振. 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报, 2013,45(2):251-256
    [10] ( Chen Sijia, Zhang Dingguo, Hong Jiazhen. A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):251-256 (in Chinese))
    [11] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    [11] ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    [12] 范纪华, 章定国, 谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报, 2019,51(5):1455-1465
    [12] ( Fan Jihua, Zhang Dingguo, Shen Hong. Research on elastic line method based on absolute nodal coordinate method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1455-1465 (in Chinese))
    [13] 范纪华, 陈立威, 王明强 等. 旋转中心刚体—FGM梁刚柔热耦合动力学特性研究. 力学学报, 2019,51(6):1905-1917
    [13] ( Fan Jihua, Chen Liwei, Wang Mingqiang, et al. Research on dynamics of a rigid-flexible-thermal coupling rotating HUB-FGM beam. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1905-1917 (in Chinese))
    [14] Spong MW. Modeling and control of elastic joint robots. Journal of Dynamic Systems Measurement and Control, 1987,109(4):310-319
    [15] Bridges MM, Dawson DM. Redesign of robust controllers for rigid-link flexible-joint robotic manipulators actuated with harmonic drive gearing. IEE Proceedings-Control Theory and Applications, 1995,142(5):508-514
    [16] 章定国, 周胜丰. 柔性杆柔性铰机器人动力学分析. 应用数学和力学, 2006,27(5):615-623
    [16] ( Zhang Dingguo, Zhou Shengfeng. Dynamic analysis of flexible-link and flexible-joint robots. Applied Mathematics and Mechanics, 2006,27(5):615-623 (in Chinese))
    [17] 刘俊. 柔性杆柔性铰机器人刚柔耦合动力学. [硕士论文]. 南京: 南京理工大学, 2006
    [17] ( Liu Jun. Researches on the rigid-flexible coupling problem of flexible-link and flexible-joint robots. [Master Thesis]. Nanjing: Nanjing University of Science and Technology, 2006 (in Chinese))
    [18] 范纪华, 章定国, 谌宏 等. 考虑关节柔性的机器人动力学分析与仿真. 计算机仿真, 2017,34(8):331-336
    [18] ( Fan Jihua, Zhang Dingguo, Shen Hong, et al. Dynamic simulation and analysis of manipulator considering flexible joint. Computer Simulation, 2017,34(8):331-336 (in Chinese))
    [19] Xi F, Fenton RG. Coupling effect of a flexible link and a flexible joint. The International Journal of Robotics Research, 1994,13(5):443-453
    [20] 边宇枢, 陆震. 柔性机器人动力学建模的一种方法. 北京航空航天大学学报, 1999,25(4):486-490
    [21] Al-Bedoor BO, Almusallam AA. Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mechanism and Mach Theory, 2000,35:785-820
    [22] Zhang DG, Zhou SF. Dynamics of flexible-link and flexible-joint robots. Applied Mathematics and Mechanics, 2006,26(5):695-704
    [23] Qian ZJ, Zhang DG, Liu J. Recursive formulation for dynamic modeling and simulation of multilink spatial flexible robotic manipulators. Advances in Mechanical Engineering, 2013: 216014-1-15
    [24] 陈思佳, 章定国. 带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析. 南京理工大学学报, 2012,36(1):182-188
    [24] ( Chen Sijia, Zhang Dingguo. Rigid-flexible coupling dynamics of flexible-link and flexible-joint robots carrying payload. Journal of Nanjing University of Science & Technology, 2012,36(1):182-188 (in Chinese))
    [25] Rong B, Rui XT, Tao L, et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics, 2019,98(2):1519-1553
    [26] Guo X, Zhang DG, Li L, et al. Application of the two-loop procedure in multibody dynamics with contact and constraint. Journal of Sound and Vibration, 2018,427:15-27
    [27] Guaraci B. Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mechanism and Machine Theory, 2017,111:99-117
    [28] Krzysztf P. Inverse dynamics and feedforward controllers for high precision position/force tracking of flexible joints robots. Robotica, 1994,12:227-241
    [29] Jankowski KP, Van Brussel H. An approach to discrete inverse dynamics control of flexible-joint robot. IEEE Transactions of Robotic and Automation, 1992 8(5):651-658
  • 期刊类型引用(12)

    1. 张建书,陈菲菲. 方向余弦矩阵的特征值与特征向量及其性质研究. 南京理工大学学报. 2025(01): 25-31 . 百度学术
    2. 纪永. 考虑外部扰动的四轮移动机器人运动轨迹控制优化方法. 机械与电子. 2023(02): 23-26 . 百度学术
    3. 张硕,杨洋,李媛媛,葛玉梅,杨翊仁. 多体柔性机械臂的非线性能量阱被动控制研究. 四川轻化工大学学报(自然科学版). 2023(01): 33-40 . 百度学术
    4. 张华. 基于非线性优化算法的工业机器人轨迹跟踪自动控制. 机械与电子. 2023(04): 55-59 . 百度学术
    5. 熊宇,曾贵娥,崔晓. 柔性关节机器人抓取末端振动自动化控制方法. 自动化与仪表. 2023(09): 51-55+91 . 百度学术
    6. 张福礼,袁朝辉. 基于递归Gibbs-Appell的柔性空间机器人建模与特性分析. 航空动力学报. 2023(10): 2545-2560 . 百度学术
    7. 党卫军,冯诺旼,曾文凡,孙奇珍,李剑峰. 配电网电缆通道巡检机器人越障机构与控制系统设计. 机械设计与制造工程. 2023(12): 49-54 . 百度学术
    8. 刘许亮. 智能制造机器人多手臂自适应协同控制方法研究. 制造业自动化. 2022(01): 110-113 . 百度学术
    9. 傅景礼,陆晓丹,项春. 爬壁机器人系统的Noether对称性和守恒量. 力学学报. 2022(06): 1680-1693 . 本站查看
    10. 高钰清 ,靳葳 ,徐鉴 ,方虹斌 . 踝关节外骨骼人机耦合动力学与助力性能分析. 力学学报. 2022(12): 3496-3512 . 本站查看
    11. 钱佳伟,孙秀婷,徐鉴,方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报. 2021(07): 2023-2036 . 本站查看
    12. 张文静,牛江川,申永军,温少芳. 基于分数阶磁流变液阻尼器模型的车辆悬架组合控制. 力学学报. 2021(07): 2037-2046 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  2377
  • HTML全文浏览量:  425
  • PDF下载量:  388
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-03-04
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回